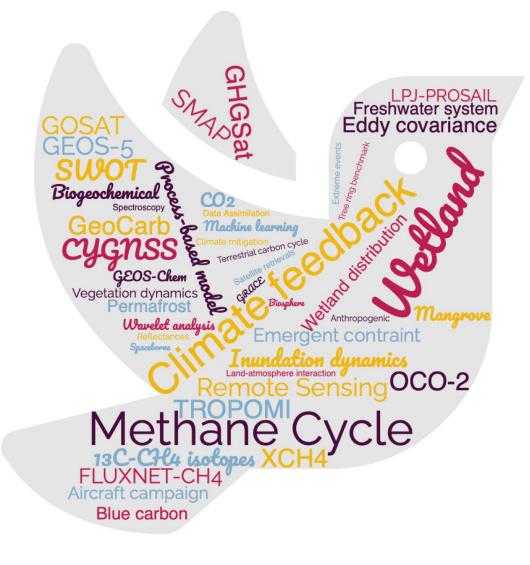
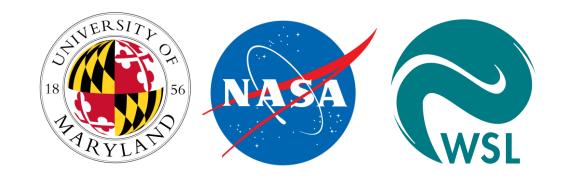


中國科学院青藏高原研究所

Institute of Tibetan Plateau Research Chinese Academy of Sciences

青藏高原地球系统与资源环境重点实验室 Key Laboratory of Tibetan Plateau Earth System, Environment and Resources

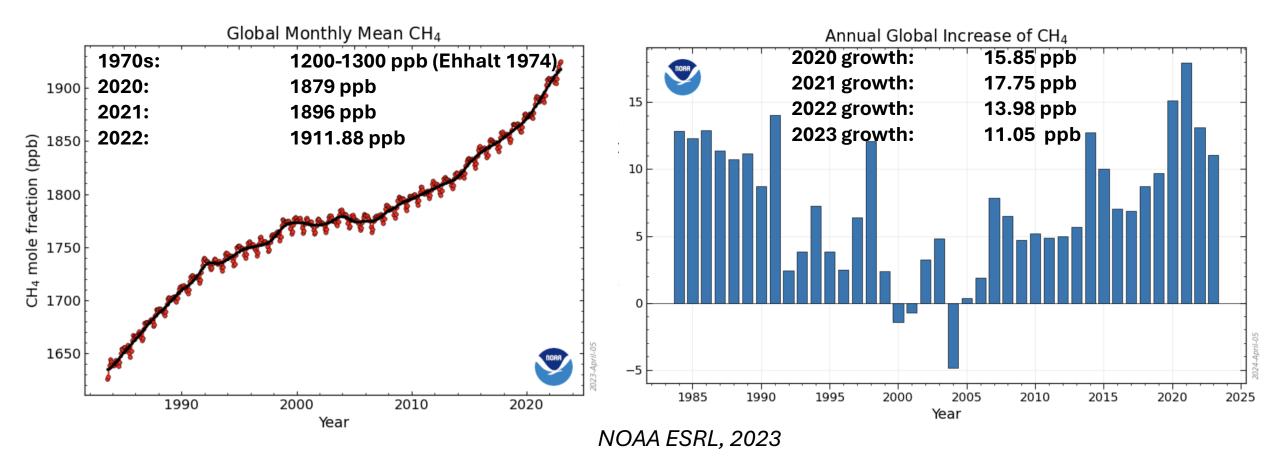



Wetland methane feedback over the last decades

张臻 中国科学院青藏高原研究所

July. 18. 2024

My Research WordCloud:



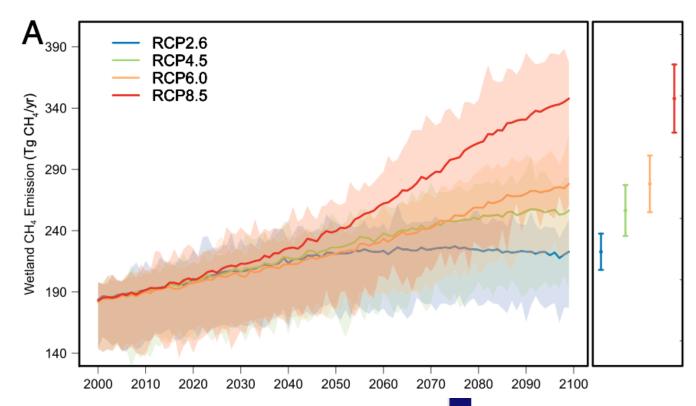
Methane is fascinatingly difficult to study

- Methane is a greenhouse gas 82x (GWP-20) more potent than CO_2 (29x, GWP-100)
- The short lifetime, 11.8 years, provides several opportunities for mitigation

Wetland-methane feedback is the major driver of rising methane

concentration during naleoclimate events

Article

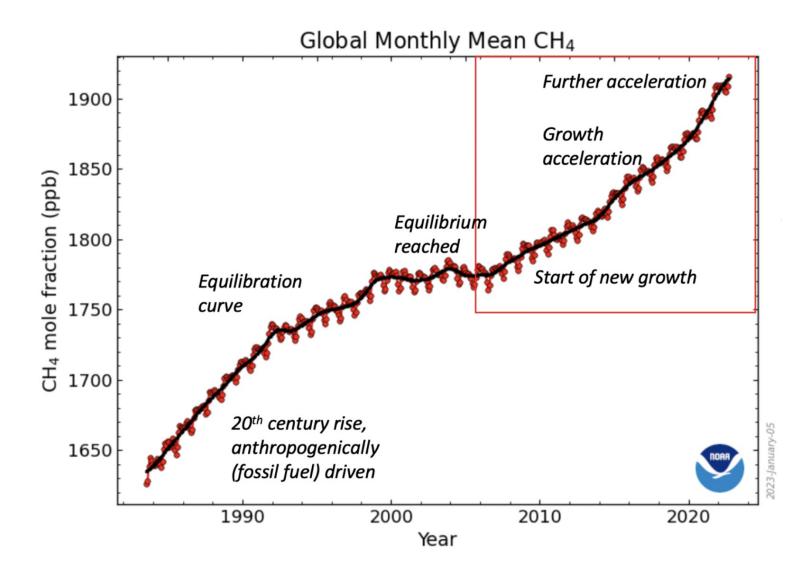

Extensive global wetland loss over the past three centuries

https://doi.org/10.1038/s41586-022-05572-6 Etienne Fluet-Chouinard^{1,2,27 [2]}, Benjamin D. Stocker^{3,4,5,6}, Zhen Zhang⁷, Avni Malhotra¹, Joe R. Melton⁸, Benjamin Poulter⁹, Jed O. Kaplan¹⁰, Kees Klein Goldewijk¹¹, Stefan Siebert^{12,13} Jeffrey P. Severinghaus⁵ Received: 18 January 2022 Tatiana Minayeva¹⁴, Gustaf Hugelius^{1,15,16}, Hans Joosten^{17,18}, Alexandra Barthelmes^{17,18} Catherine Prigent^{19,20}, Filipe Aires^{19,20}, Alison M. Hoyt¹, Nick Davidson^{21,22}, C. Max Finlayson^{22,23} Accepted: 17 November 2022 Bernhard Lehner²⁴, Robert B, Jackson^{1,25} & Peter B, McIntvre^{2,26} Published online: 8 February 2023 Methane concentration (p.p.b.v.) 700 600 500 Atmospheric methane since the LGM was driven by wetland sources Thomas Kleinen¹, Sergey Gromov², Benedikt Steil², and Victor Brovkin¹ 400 ¹Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany ²Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany Correspondence: Thomas Kleinen (thomas.kleinen@mpimet.mpg.de) YD PB 300 25.000 20,000 15,000 10.000 5.000 Age (years before AD 1950)

Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

Vasilii V. Petrenko¹, Andrew M. Smith², Hinrich Schaefer³, Katja Riedel³, Edward Brook⁴, Daniel Baggenstos^{5,6}, Christina Harth⁵ Ouan Hua², Christo Buizert⁴, Adrian Schilt⁴, Xavier Fain⁷, Logan Mitchell^{4,8}, Thomas Bauska^{4,9}, Anais Orsi^{5,10}, Ray F. Weiss⁵ &

Future projections of wetland-methane feedback



Emerging role of wetland methane emissions in driving 21st century climate change

Zhen Zhang^{a,b,c,1}, Niklaus E. Zimmermann^{a,d}, Andrea Stenke^d, Xin Li^{c,e}, Elke L. Hodson^f, Gaofeng Zhu^g, Chunlin Huang^c, and Benjamin Poulter^{c,h}

^aDynamic Macroecology, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland; ^bInstitute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT 59717; ^cNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; ^dDepartment of Environmental System Science, ETH Zürich, Zürich 8092, Switzerland; ^eCAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; ^fOffice of Energy Policy and Systems Analysis, US Department of Energy, Washington, DC 20585; ⁹Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou 730000, China; and ^hBiospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770

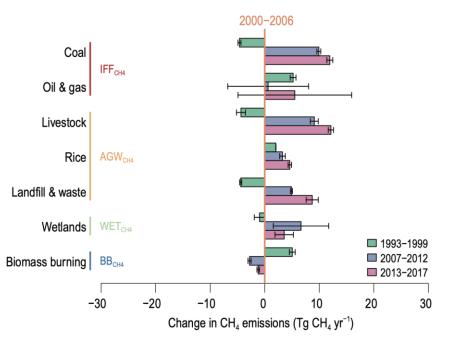
Signal of emerging wetland feedback to climate change?

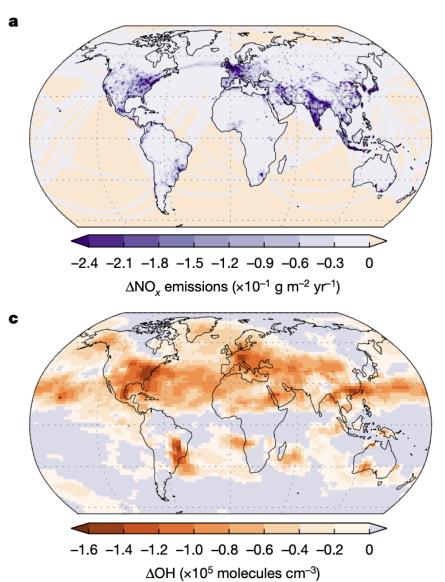
The rise of atmospheric CH_4 growth rate for the last three decades is mainly driven by anthropogenic sources

RESEARCH ARTICLE

National Science Review 9: nwab200, 2022 https://doi.org/10.1093/nsr/nwab200 Advance access publication 11 November 2021

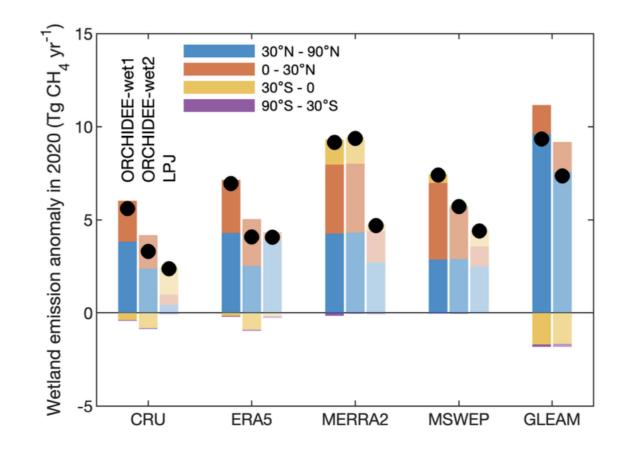
EARTH SCIENCES

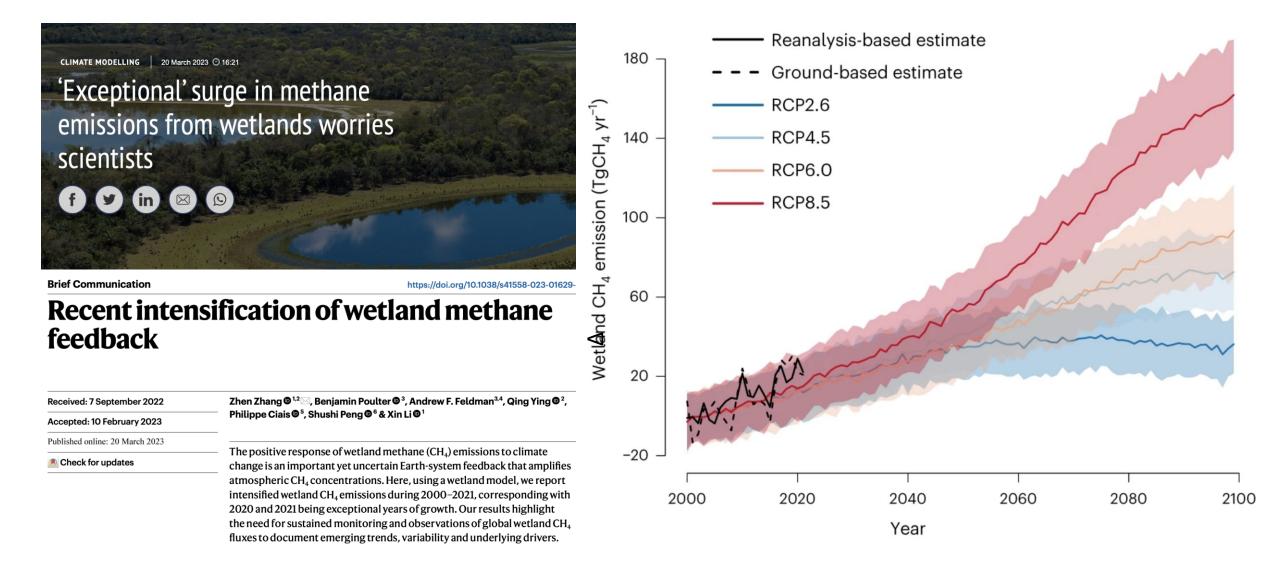

Geographical Sciences, University of Maryland, College Park, MD 20742, USA: ²Biospheric Sciences Laboratory, NASA Goddard Space Flight Center. Greenbelt, MD 20771, USA; ³Department of Geography, University of British Columbia, Vancouver V6T 1Z2, Canada; ⁴Global Carbon Project CSIRO


¹Department of

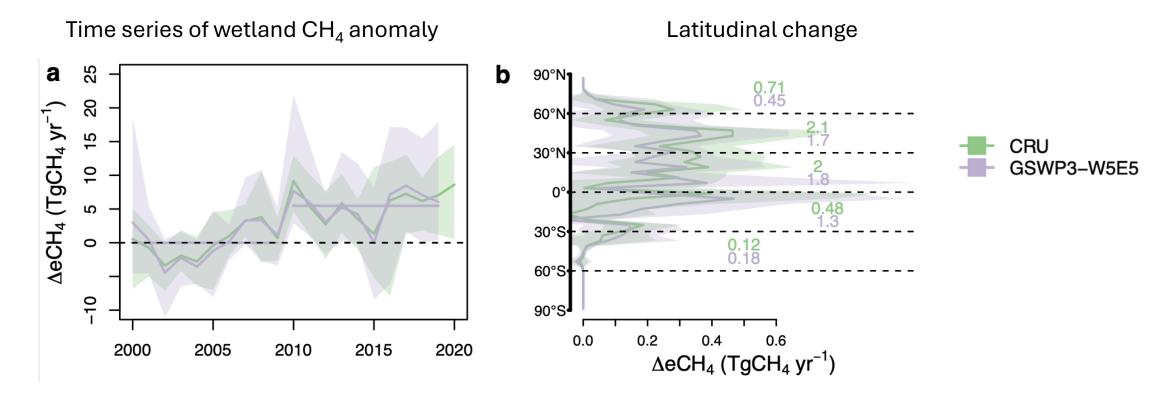
Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017

Zhen Zhang (张臻) ^{1,*}, Benjamin Poulter², Sara Knox³, Ann Stavert⁴, Gavin McNicol⁵, Etienne Fluet-Chouinard⁶, Aryeh Feinberg⁷, Yuanhong Zhao (赵园红)⁸, Philippe Bousquet⁹, Josep G. Canadell⁴, Anita Ganesan¹⁰, Gustaf Hugelius¹¹, George Hurtt¹, Robert B. Jackson^{6,12}, Prabir K. Patra¹³, Marielle Saunois⁹, Lena Höglund-Isaksson¹⁴, Chunlin Huang (黄春林)¹⁵, Abhishek Chatterjee^{16,17} and Xin Li (李新) ¹⁸


- Atmospheric CH₄ box model in forward and inverse mode
- Comprehensive ¹³C-CH₄ isotopes database
- Thousands of emissions scenarios that cover prevailing CH_4 hypothesis.



Article Wetland emission and atmospheric sink changes explain methane growth in 2020


https://doi.org/10.1038/s41586-022-05447-w Received: 25 January 2022 Accepted: 14 October 2022 Shushi Peng^{1,2,3⊠}, Xin Lin^{4⊠}, Rona L. Thompson⁵, Yi Xi^{1,2}, Gang Liu^{1,2}, Didier Hauglustaine⁴, Xin Lan^{6,7}, Benjamin Poulter⁸, Michel Ramonet⁴, Marielle Saunois⁴, Yi Yin⁹, Zhen Zhang¹⁰, Bo Zheng^{11,12} & Philippe Ciais^{1,2,4,13}

Model results support enhancing wetland CH₄ feedback (1)

Model results support enhancing wetland CH₄ feedback (2)

Ensemble estimates of global wetland methane emissions over 2000-2020

Zhen Zhang¹, Benjamin Poulter², Joe R. Melton³, William J. Riley⁴, George H. Allen⁵, David J. Beerling⁶, Philippe Bousquet⁷, Josep G Canadell⁸, Etienne Fluet-Chouinard⁹, Philippe Ciais⁷, Nicola Gedney¹⁰, Peter O. Hopcroft¹¹, Akihiko Ito¹², Robert B. Jackson¹³, Atul K. Jain¹⁴, Katherine Jensen¹⁵, Fortunat Joos¹⁶, Thomas Kleinen¹⁷, Sara Knox^{18,19}, Tingting Li²⁰, Xin Li¹, Xiangyu Liu²¹, Kyle McDonald¹⁵, Gavin McNicol²², Paul A. Miller²³, Jurek Müller¹⁶, Prabir K. Patra^{24,25}, Changhui Peng²⁶, Shushi Peng²⁷, Zhangcai Qin²⁸, Ryan M. Riggs²⁹, Marielle Saunois⁷, Qing Sun¹⁶, Hanqin Tian³⁰, Xiaoming Xu¹⁴, Yuanzhi Yao³¹, Xi Yi²⁷, Wenxin Zhang²², Qing Zhu⁴, Qiuan Zhu³², Qianlai Zhuang²¹

Using measurements to inform CH₄ studies

Knowledge-informed CH₄ ML Model WetCH₄

FLUXNET-CH₄ SYNTHESIS ACTIVITY

Objectives, Observations, and Future Directions

SARA H. KNOX, ROBERT B. JACKSON, BENJAMIN POULTER, GAVIN MCNICOL, ETIENNE FLUET-CHOUINARD, ZHEN ZHANG, GUSTAF HUGELIUS, PHILIPPE BOUSQUET, JOSEP G. CANADELL, MARIELLE SAUNOIS, DARIO PAPALE, HOUSEN CHU, TREVOR F. KEENAN, DENNIS BALDOCCHI, MARGARET S. TORN, IVAN MAMMARELLA, CARLO TROTTA, MIKA AURELA, GIL BOHRER,

Article

https://doi.org/10.5194/essd-13-3607-2021 © Author(s) 2021 This work is distributed under the Creative Commons Attribution 4.0 License.

Data description paper | 🖾 🛈

29 Jul 2021

Related articles

Metrics

FLUXNET-CH₄: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater watlande

JGR Biogeosciences

RESEARCH ARTICLE

10.1029/2022JG007259

Key Points:

- Significant model-observation disagreements were found at multiday and weekly time scales (<15 days) Models captured variability
- at monthly and seasonal time (42-142 days) scales for boreal and Arctic tundra sites but not for temperate and tropical sites
- The model errors show that biases at multi-day time scales may contribute to persistent systematic biases on longer time scales

Supporting Information:

Supporting Information may be found in the online version of this article.

Characterizing Performance of Freshwater Wetland Methane Models Across Time Scales at FLUXNET-CH₄ Sites Using Wavelet Analyses

Assets Peer review

Zhen Zhang^{1,2} , Sheel Bansal³, Kuang-Yu Chang⁴, Etienne Fluet-Chouinard⁵ Kyle Delwiche⁶, Mathias Goeckede⁷, Adrian Gustafson⁸, Sara Knox⁹, Antti Leppänen¹⁰, Licheng Liu¹¹ , Jinxun Liu¹², Avni Malhotra¹³, Tiina Markkanen¹⁰, Gavin McNicol¹⁴ Joe R. Melton¹⁵ , Paul A. Miller⁸ , Changhui Peng¹⁶ , Maarit Raivonen¹⁰, William J. Rilev⁴ Oliver Sonnentag¹⁷, Tuula Aalto¹⁰, Rodrigo Vargas¹⁸, Wenxin Zhang⁸, Oing Zhu⁴, Oiuan Zhu¹⁹ Oianlai Zhuang¹¹ . Lisamarie Windham-Myers²⁰ , Robert B. Jackson²¹ , and Benjamin Poulter²²

¹National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, ²Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA, ³Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND, USA, ⁴Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 5Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, ⁶Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA, ⁷Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany, ⁸Department of Physical

Variable type	Name	Description	Unit	Data source	Spatial resolution	Temporal resolution
Reanalysis	tas	surface air temperature	°C	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	ра	surface air pressure	Кра	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	le	latent heat	W m-2	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	h	sensible heat	W m-2	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	rsdl	downward-incoming longwave radiation	W m ⁻²	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	rsds	downward-incoming shortwave radiation	W m-2	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	spfh	surface specific humidity	unitless	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	ts1	soil temperature	°C	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	ts2	soil temperature	°C	MERRA2	0.625°×0.5°	1 hourly
Reanalysis	ts3	soil temperature	°C	MERRA2	0.625°×0.5°	1 hourly
Remote Sensing	sm_s_wetness	surface soil wetness	unitless	SPL4SMGP.007	9 km	3 hourly
Remote Sensing	sm_r_wetness	rootzone soil wetness	unitless	SPL4SMGP.007	9 km	3 hourly
Remote Sensing	sm_p_wetness	profile soil wetness	unitless	SPL4SMGP.007	9 km	3 hourly
Remote Sensing	nbar1	red band	unitless	MCD43A4v061	500 m	daily
Remote Sensing	nbar2	near infrared 1 band	unitless	MCD43A4v061	500 m	daily
Remote Sensing	nbar3	blue	unitless	MCD43A4v061	500 m	daily
Remote Sensing	nbar4	green	unitless	MCD43A4v061	500 m	daily
Remote Sensing	nbar5	near infrared 2 band	unitless	MCD43A4v061	500 m	daily
Remote Sensing	nbar6	shortwave infrared 1 band	unitless	MCD43A4v061	500m	daily
Remote Sensing	nbar7	shortwave infrared 2 band	unitless	MCD43A4v061	500 m	daily
Remote Sensing	dem	altitude	m	MERIT-DEM	90 m	static
Remote Sensing	slope	terrain slope	radian	Geomorpho90m	90 m	static
Remote Sensing	spi	stream power index	unitless	Geomorpho90m	90 m	static
Remote Sensing	cti	compound topographic index	unitless	Geomorpho90m	90 m	static

(Ying et al., 2024)

Key Messages

- Anthropogenic emissions are the dominant driver to the rise of growth rate during the last decades.
- Strong evidence suggest ongoing wetland-methane feedbacks.
- Wetland methane feedback is likely playing an important role in the record high growth rate of atmospheric for 2020-2022.

We are recruiting and seeking collaborations! Welcome to contact me!

Email: Zhen Zhang (zhenzhang@itpcas.ac.cn)

