

An Integrated Rate Methodology (IRM) for Estimating Terrestrial Water and Carbon Fluxes

www.csiro.au

Lu Zhang, Shuai Wang, Lei Cheng

State Key Laboratory of Water Resources Engineering and Management

Wuhan University, Wuhan 430072, China

Carbon-Water Coupling

Biome and climate relationship **Whittaker's diagram**

CSIR

Carbon and water cycles are intrinsically coupled

Since carbon uptake and water loss occur through stomata, photosynthesis and transpiration both decline with stomatal closure.

Transpiration and stomatal control

$$
E = \rho g_c (q_s^* - q_s)
$$

Penman-Monteith equation

 $\left(\rho c_{_{p}}$ / $\gamma \right)$ $1 + e$ / *p a a a c* $A + (\rho c_{n} / \gamma) g_{a} D$ *E g g* $\mathcal{E}A + \rho C_p / \gamma$ $\mathcal E$ + $=\frac{\epsilon+1+i}{\epsilon+i}$

John Monteith (1929-2012)

Effect of stomatal control: from leaf to region

$$
E = \Omega_{ci} E_{eq} + (1 - \Omega_{ci}) E_{imp} \qquad \Omega_{ci} = (\varepsilon + 1) / (\varepsilon + 1 + g_a / g_c)
$$

$$
\Omega_{ci}
$$
 is the decoupling factor between vegetation and atmosphere.

$$
\frac{dE}{dE} = (1 - \Omega_c) \frac{dg_c}{dE}
$$

on the transpiration that the transpiration α Ω_{ci} is the decoupling factor between vegetation and atmosphere.

$$
\frac{dE}{E} = (1 - \Omega_{ci}) \frac{dg_c}{g_c}
$$

 Ω_{ci} increases with spatial scale, *E* is less controlled by stomatal conductance.

Linked terrestrial water and carbon cycles

Raupach et al (2001)

Energy-Water-Carbon Coupling

Dynamics of water-energy-carbon fluxes

Water balance:
$$
\frac{dS(t)}{dt} = P(t) - E(t) - Q(t) - R(t)
$$

Carbon balance:
$$
\frac{dC_p(t)}{dt} = GPP(t) - RP(t) - L(t)
$$

Energy balance:
$$
\frac{dW(t)}{dt} = R_n(t) - E(t) - H(t) - F_p(t)
$$

We must consider the balance in the process representation so that model consistency, reliability and accuracy can be achieved.

Theoretical framework: long-term average evaporation

Demand = Potential evaporation (E_0)

Supply = Precipitation (P)

$$
\frac{E}{P} = 1 + \frac{E_0}{P} - \left[1 + \left(\frac{E_0}{P}\right)^{W}\right]^{1/w}
$$

Fu (1981), Zhang et al. (2004)

Theoretical framework: long-term average evaporation

$$
\frac{E}{E_{pa}} = 1 + \frac{P}{E_{pa}} - \left[1 + \left(\frac{P}{E_{pa}}\right)^{w}\right]^{1/w}
$$

Zhang and Brutsaert (2021)

Budyko-like equation for carbon?

Zhang et al (2001), Jones et al (2012) Camops et al (2013)

The Michaelis–Menten Equation

In biochemistry, the Michaelis–Menten Equation describes enzyme kinetics:

$$
\mu = V_{max} \frac{S}{K_s + S}
$$

Where μ is the reaction rate, and V_{max} is maximum reaction rate, *S* is the concentration of a substrate, $K_{\rm s}$ is the concentration of the substrate at which the reaction rate is half of $V_{\sf max}$. $K_{\sf s}$ controls how fast $\ V_{\sf max}$ is approached.

Leonor Michaelis (1875 -1949)

Maud Menten (1879 -1960)

Generalized Michaelis–Menten Equation

To generalize a single substrate system to an n-substrate systems, a ratio form of the Michaelis–Menten equation is considered:

$$
r = \frac{\mu}{V_{max}} = \frac{1}{1 + K_s/S}
$$

The characteristics of this single substrate system:

- $r = 0$ when $S = 0$
- $r = 1$ when $S \rightarrow \infty$
- $r = 1/2$ when $S = K_s$

Generalized Michaelis–Menten equation:

$$
r_n = \frac{1}{1 + \sum_{i=1}^n \binom{K_{si}}{S_i}}
$$

Plant growth is fundamentally a function of available light, water, and nutrients (Wu et al., 1994).

$$
A = A_{max} \left[\frac{1 + W_H + W_N}{\frac{1}{m_L x_L} + \frac{W_H}{x_H} + \frac{W_N}{x_N}} \right]
$$

- light: x_L
- water: x_H
- nutrients: x_N

Modelling plant growth using IRM

$$
A = A_{max} \left[\frac{1 + W_H + W_N}{\frac{1}{m_L x_L} + \frac{W_H}{x_H} + \frac{W_N}{x_N}} \right]
$$

where $W_H\;$ and W_N are the weightings of water relative to light and nutrients, $\;x_L^{}$, $x_H^{}$, and x_N are the relative resources availabilities for light, water, and nutrient respectively, and m_{L} is the modifier of light availability due to temperature.

Modelling plant growth using IRM

Zhang et al., (1999)

Integrated Rate Methodology (IRM) for mean annual ET and ANPP

$$
Y = Y_{max} \left[\frac{1 + W_H + W_N}{\frac{1}{m_L x_L} + \frac{W_H}{x_H} + \frac{W_N}{x_N}} \right]
$$

Global ET data:

- *Global catchment water balance (n=524)*
- *Global flux sites (n= 156)*

Estimation of mean annual evapotranspiration using IRM

Strong relationship between mean annual precipitation (MAP) and ET

Estimation of mean annual evapotranspiration using IRM

➢IRM can provide accurate estimates of mean annual ET

Global ANPP data

Locations of the 688 field-observed ANPP

Key controls on ANPP

Estimation of mean annual ANPP using IRM

The Global Primary Production Data Initiative (*GPPDI*) data (1508 points)

➢ AMP and ANPP exhibits relationship similar to the Budyko curve

Estimation of mean annual ANPP using IRM

➢ IRM can provide reasonable estimates of mean annual ANPP

Estimation of mean annual ANPP using IRM

➢ IRM can provide reasonable estimates of mean annual ANPP

Estimation of global ANPP

IRM is a useful tool for modelling carbon & water fluxes

Summary

- Carbon and water coupling is important for ecohydrology and ecosystem services.
- o Dominant controls of ecosystem water and carbon balance include precipitation and radiation.
- \circ The integrated rate methodology (IRM) can be used to estimate mean annual ET and ANPP.
- Uncertainties in the ET and ANPP estimates include temperature and age effects.
- o Further studies will be conducted to examine sensitivity parameters in the IRM and their effects on water and carbon modelling.

Thank you!

www.csiro.au