

Changing vegetation growth on Tibetan Plateau and its impact on carbon uptake

Dan Liu¹ (刘丹), Shaoyuan Chen² (陈绍远), Chaoyi Xu¹ (许超逸), Tao Wang¹ (汪涛)

¹State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research,

Chinese Academy of Sciences, Beijing, China; ²Sino-French Institute for Earth System Science, College of Urban and Environmental

Sciences, Peking University, Beijing, China

2024.07.18 Xining

Background

Rapid climate change on Tibetan Plateau

Warming at a rate twice of global average

Widespread wetting in endorheic basins

(Yao et al., 2022)

Background

Vegetation greening on Tibetan Plateau

Scientific question

How is vegetation greening contributing to ecosystem carbon uptake?

1. Contribution of vegetation greening to decadal trend of GPP

(Chen, Liu^{*} et al. 2024, Agricultural and Forest Meteorology)

1. Contribution of vegetation greening to decadal trend of GPP

Acceptable uncertainties after we control LAI in the process-based model

(Chen, Liu^{*} et al. 2024, Agricultural and Forest Meteorology)

1. Contribution of vegetation greening to decadal trend of GPP

Greening contributed to 27% of increasing GPP

GPP is increasing with a rate around 3.9% per decade

(Chen, Liu^{*} et al. 2024, Agricultural and Forest Meteorology)

(Xu, Liu^{*} et al., 2023, Frontiers in Plant Science)

Framework based on the "laws of minimum"

10% of the grasslands over the Tibetan Plateau is facing increasing water stress during peak season in summer

(Xu, Liu^{*} et al., 2023, Frontiers in Plant Science)

External driver: precipitation is decreasing during late green-up stage

(Xu, Liu^{*} et al., 2023, Frontiers in Plant Science)

Data source: reanalysis product of Indian Monsoon Data Assimilation and Analysis reanalysis (IMDAA) project

Endogenous driver: rapid growth in early green-up stage exploit soil water and suppress growth during peak season

- We conducted partial correlation analysis by relating soil moisture with the date of peak growth, while controlling the precipitation.
- Years with earlier peak of vegetation growth also show lower soil moisture.

(Xu, Liu^{*} et al., 2023, Frontiers in Plant Science)

3. Implication for shifting phenology on ecosystem carbon uptake

Advancing peak growth stimulates ecosystem production, but this impact is weakening due to increasing water limitation

- 1. Increasing carbon uptake on Tibetan Plateau is primarily driven by warming and wetting climate through leaf physiology instead of canopy greening.
- 2. An enhanced and spring-ward shift of peak vegetation growth is accompanied by abundant water resources in early growing season, as well as increasing water limitations during the peak season.
- 3. Spring-ward shift of peak vegetation growth could benefit ecosystem carbon uptake, but this impact is weakening during past two decades.

Welcome collaboration

- Dan Liu (liu.dan@itpcas.ac.cn)
- □ Institute of Tibetan Plateau Research, Chinese Academy of Sciences
- Google scholar page: https://scholar.google.com/citations?user=XIk38mIAAAAJ&hl=en

References:

- Chen SY, Liu D*, Zhang Y, Zheng RS, Wang T. (2024) Data-constrained modeling of terrestrial gross primary production over the Tibetan Plateau for 2003–2019. *Agricultural and Forest Meteorology*. 355: 110129. DOI: <u>https://doi.org/10.1016/j.agrformet.2024.110129</u>
- Xu CY, Liu D*, Wang XY, Wang T. (2023) Shifting from a thermal-constrained to water-constrained ecosystem over the Tibetan Plateau. *Frontiers in Plant Science*. 14, 1125288. doi: 10.3389/fpls.2023.1125288.