「「 「 」 「 」 「 」 、 注 、 、 学 NINGXIA UNIVERSITY

第20届中美碳联盟(USCCC)年会

荒漠草原区人工灌丛生态系统碳水耦合特征 及对干旱响应

杜灵通

宁夏大学生态环境学院 dult80@nxu.edu.cn 2024年7月18日

Global greening成为热点,全球尺度CO2施肥主要驱动,区域尺度其他因素(如植树造林)。

Chen et.al. Nat. Sustain., 2019 Piao et al., Nat. Rev. Earth Environ., 2020

植被变绿对地气水循环和能量过程产生影响

Biogeophysical feedbacks of recent vegetation greening to the climate system

Piao et al., Nat. Rev. Earth Environ., 2020

极端气候事件对陆地生态系统碳汇影响明显

朴世龙等, 中国科学: 地球科学, 2019.

盐池荒漠草原经历了典型的植被变绿 (人工灌丛化)

第 20 届 中 耒 碳 联 盟 年 会

盐池人工灌丛化区碳水观测与模拟

人工灌丛生态系统碳水循环特征

山 人工灌丛化的水碳耦合特征及权衡

一人工灌丛生态系统碳汇对干旱的响应

宁夏大学盐池荒漠草原生态定位站概况

- 始于20世纪70年代的教 学科研基地
- 2009年扩建荒漠草原农 牧系统生态工程基地
- > 2015年开始布局生态系 统碳水循环观测体系
- > 针对荒漠草原区建植灌 丛所引起的生态系统结 构和功能变化,及其稳 定性维持机制开展研究

生态系统水循环观测研究实验

荒漠草原人工灌丛生态系统水文循环过程观测试验

宁夏大学盐池荒漠草原生态定位站设备

盐池荒漠草原生态系统野外定位研究站设备

人工灌丛入侵荒漠草原的生态过程模拟

人工灌丛入侵荒漠草原的生态过程模拟

人工灌丛能量、水和碳通量。

Tang et al., *Biogeosciences*, 2024

第 20 届 中 耒 碳 联 盟 年 会

人工灌丛生态系统碳水通量模拟结果验证

人工灌丛生态系统碳水通量模拟结果验证

Biome-BGC模拟人工灌丛GPP、NEE和Re与涡度相关实测对比

人工灌丛生态系统碳水通量模拟结果验证

Tang et al., Biogeosciences, 2024

人工灌丛生态系统水通量特征

人工灌丛的ET大于草地,甚至灌丛的ET在一些年份大于降雨量,近20年来该区域的潜在蒸散 (ET₀)明显减少,但人工灌丛实际蒸散在增加,表明荒漠草原人工植被重建加剧了生态系统的耗水量。 Du et al., *Agr. Forest. Meteorol.,* 2021

人工灌丛生态系统水通量特征

人工灌丛消耗更多的土壤水

Tang et al., Biogeosciences, 2024

人工灌丛生态系统碳通量特征

人工灌丛生态系统碳通量特征

STEMMUS模拟的人工灌丛年内GPP与草地对比

STEMMUS模拟的人工灌丛日内GPP与草地对比

Tang et al., *Biogeosciences*, 2024

第 20 届 中 耒 碳 联 盟 年 会

盐池人工灌丛化区碳水观测与模拟

人工灌丛生态系统碳水循环特征

川人工灌丛化的水碳耦合特征及权衡

一人工灌丛生态系统碳汇对干旱的响应

人工灌丛入侵荒漠草原引起生态系统水文消耗增强

人工灌丛入侵荒漠草原增强生态系统的碳汇能力

人工灌丛化增强了生态系统碳循环过程,包括碳吸收和碳排放,最终增加了生态系统的碳积累。 Du et al., Agr. Forest. Meteorol., 2021

人工灌丛入侵荒漠草原对能量、水和碳通量的综合影响

Tang et al., *Biogeosciences*, 2024

人工灌丛入侵荒漠草原:从生态系统结构到生态功能的转变

人工灌丛化植被结构变化引起碳水循环转变的机制

荒漠草原人工灌丛建植的碳水权衡

第 20 届 中 耒 碳 联 盟 年 会

盐池人工灌丛化区碳水观测与模拟

人工灌丛生态系统碳水循环特征

四人工灌丛化的水碳耦合特征及权衡

了人工灌丛生态系统碳汇对干旱的响应

2019-2022期间气候特点及干旱诊断

> 2019正常年份, 2021-2022均在生长季不同阶段发生干旱。

生长季不同阶段干旱对人工灌丛碳汇的影响

> 2021生长季中期的干旱对人工灌丛的影响最大。

夜间生态系统呼吸对空气温度和土壤湿度的响应特征

> 气温升高和土壤水分降低会对夜间土壤呼吸产生抑制,但不同阶段干旱存在差异。

不同阶段干旱对人工灌丛碳水通量及生物物理因素的影响

2019-2022年生长季不同阶段碳水通量及其生物物理因素的变化

