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What are the fundamental progresses?

Energy and water cycles

* Penman equation (1948)

* Monin-Obukhov similarity theory (1954)
* Budyko curve (1961)

* Penman-Monteith equation (1965)

* Priestley-Taylor equation (1972)

Carbon cycle

e Cavin cycle (C3) (1950)

* Hatch-Slack pathway (C4) (1966)

* Cowan and Farquhar’s optimization theory (1977)
* Farquhar’s photosynthesis model (1980)

Coupling (leaf water use efficiency)
* Bierhuizen and Slayter model (WUE=Y/T=k/VPD) (1965)
* Farquhar’s theory (1982)



Prologue

We have hundreds of models of water and carbon cycles. The coupled
energy, water, carbon or even nutrient cycles are included in most
advanced earth system models for projecting future climate or
environmental changes.

However, much of the fundamentals underpinned those models were
developed >40 years ago.

Q: are we making real progress?



Coupling of energy, water and carbon cycles

* Coupling of water and energy cycles was recognized, and the physics on
latent heat transfer was understood (Black 1762).

e Studies of the coupling of water and carbon cycles were made possible
only with the invention of leaf gas exchange (Bierhuizen and Slatyer 1964).

* Including surface conductance into Penman-Monteith equation (1966)
started a new era of studies on water and carbon coupling.



Bierhuizen and Slatyer (1965, Agri. Met.
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Penman-Monteith equation

Penman equation (1948)
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Penman-Monteith equation (1965)

John Monteith

A( R, — G) +p, Cp /Th (1929-2012)
AE = -
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Monteith (1965) stated: “the parameters r,, and r, allow the equations of

heat and vapor flux derived from a single leaf to be applied to a plant
community”



Scaling from leaf to canopy using r, attracted
criticism

A meeting organised by Lloyd Evans in 1962 in Canberra invited a number of
prominent scientists, including RJ Taylor, WC Swinbank, CB Tanner, John Philip.

CB Tanner (1963) “derivation of r, is invalid when the sources and sinks of
heat, water vapour and momentum were set at different levels of a crop
canopy” .

John Philip (1966): “work which is superficially mathematical-physical, but
which contains loose thinking, non-rigorous calculations, uncoordinated
physical measurements in the field, and overinflated claims”....” is an artifact
of a somewhat unrealistic analysis, and its physiological significance is
questionable”.



Advances on canopy meteorology (1980’s)

Thoms AS (1976) (different profiles for heat and momentum transfer).
Denmead OT and EF Bradley (1985). Counter-gradient observed.

Raupach MR (1989) Near field and far field for canopy turbulence.

1E — A(Rp,—G)+pacCp/Th ' 1E — AYRp+pacpD/Th

v w, v
prr(1+22) (2 2)



Ecosystem evapotranspiration

Leaf scale:
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An increase in canopy temperature increases the
vapor pressure deficit (D), which tends to increase
transpiration and partially counteract the effect of
the increase inr,.



What effect will a small fractional change in stomatal conductance have

on the transpiration rate of the transpiring unit?

E= QCl'EeCI + (1 o ‘Q‘Ci)EimP Qci = (g—l—]_)/(g—l—l-l— rci /rai)

Q is the decoupling factor (f#f8X+) between vegetation and atmosphere

Q increases with spatial scale, E is less controlled by stomatal conductance.

much smaller change

Planetary Boundary Layer




Surface conductance (1/r,) is not a simple
integral of leaf stomatal conductance(1/r)
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Key message

e Surface conductance is not a simple
integral of leaf stomatal conductance
if the averaging scheme is applied to a
multi-layered canopy

* The averaging scheme for water
vapour is different from that for CO, or
surface temperature



Soil-Plant-Atmosphere-Continuum (SPAC)

To counteract the “over-simplification” by John Monteith (1965), John Philip
(1966) proposed and outline soil-plant-atmosphere continuum (SPAC).

* Boundary conditions and energy source

* Initial conditions through the SPAC

* Transfer equations for energy and water (second order pdes)
* Conductivities, diffusivities and other coefficients

* The geometry

Philip then admitted: the problem is too complicated. Simplifications are

necessary.

* semi-isothermal

* quasi-stationary

* simplified geometry
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Applications of WUE in crop modelling

Y=WUE XT = % X T (Tanner and Sinclair 1983)
ET =T+ E

1
E = E, 5. (tY?—(t—1)2) (Philip 1957)

ET

——— = f(65,1g) (French and Schulz 1985)
L N AL .
2_2 (D E) - (Philip 1957)
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PM equation into global climate models

Dickinson and Henderson-Seller (1988) found that climate models with those early land models were
inadequate for assessing the climatic impact of Amazon deforestation.
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The physiological effects on water, carbon fluxes,
WUE and surface T (Bounoua et al. 1999)
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The fully coupled energy, water and carbon
cycle into earth system model

Two groups predicted very
different response of land
carbon by 215t century, source
(Cox et al. 2000) and sink
(Friedingstein et al. 2001)

Fung et al. (2000) advocated the
flying leap for carbon, or CAMIP

By now there are >12 earth
system models in CMIP6
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Sea floor
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Bonan and Doney 2018




Tools for studying the coupled water and
carbon cycles

* Global land surface model/earth system models
 Remote-sensing based models

* Observational based data analysis including machine learning



Observational evidence of a strong water-
carbon coupling (Humphrey et al. 2018)
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Comparison of GPP estimates
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Latitudinal pattern and trend (Pan et al. 2020

Decline due to SH drying.
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Global WUE and its trend
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Leaf stomatal conductance at suboptimal or
complexity in scaling up?
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Positive response of GPP to VPD cannot be
explained by the current model

A 0.5

0.4

0.3+

0.1+

Regression coefficient
=

0.2

84°N|
TENT e ot
B0°N | % i

P Seseili |
. -||||i'||||n| II|“: li "!I"‘!I'"m

<08 -04 0 0.4 >(0.8

|| i“

l
n=10755 BP=3.52 hPa I
" p<0.01;

Below the BP:

" Slope=-0.03 hPa"',
p<0.01 )
Above the BP: »

_ Slope=-0.19 hPa"!, \
p<0.01 N\

kS Tt ¢ )
0° 40°E 80°E 120°E 160°E
a

1 2 3 . 5 6 7

Multi-year growing-season average VPD (hPa)

B 0.6

= =
(ST

Regression coefficient
=
.

84:’N
72°N
60°N
<0.8 -04 0 0.4 >().8
[ilkh MM"\I
s
i diT
'n=7899 BP=3.43hPa '"I" il
p<0.01; N "u
-Below the BP: 2 | ‘
Slope=-0.01 hPa", i h
p<0.01 l
Above the BP: -
"Slope=-0.13 hPa", N
p<0.01 . |
2 4 6 8

Multi-year growing-season average VPD (hPa)

Zhong et al. 2023




Positive sensitivity of SIF-based WUE to VPD
/hang et al. 2023
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Unresolved issues

* Lack of sufficient data to constrain global simulation. For example, no
observationally-based estimates of global ET are available. All ET data products
are generated by models, Precipitation data have large uncertainties.

* Lack of systematic benchmarking/calibration

 Under-sample regions or ecosystems

* Missing processes/errors in the inputs, such as precipitation

* Scaling issues remain



A personal prospective: where

* Machine learning will become more widely used;

* Nowecast and forecast with data assimilation will be used in studying policy-
related questions;

e Advances in global science: why responses of some key processes vary with scale
(both time and space)? Some new theories likely emerge as more observational
evidence is gathered

* Importance of scales in studying the coupling
* (energy; days to weeks, water: month to year; carbon year to century).



Q: Are we making progress?

A: Yes! | have more observations than every before, more
models than ever before. We also have evidence of a strong
coupling of energy, water and carbon cycles at regional,
and global scales.

We have nearly completed SPAC as outlined by John Philip
in 1966 with a few twists and turns, including the late
development of plant hydraulics

(Tuzet, Perrier, Leuning 2003)



Models

A model is a useful (and often indispensable)
framework on which to organize our knowledge ...... :
the quantitative consequences of any model can be
no more reliable than the a priori agreement
between the assumptions of the model and the
known facts about the real phenomenon.”.

(John Philip, 1966 Annu. Rev. Plant. Physiol. 1966, p258).
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Response of GPP, ET and WUE to VPD
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Important contributors to the divergence
among different approaches

* Different responses of ET and GPP to VPD

* Impact of soil water stress

* Different sensitivities of ET and photosynthesis to CO2
* \egetation dynamics

* Land use change



Stomatal conductance
gt =p(ds —qy)/E
Penman-Monteith equation
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Global pattern of gross primary production
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Comparison of global ET estimates (mm/yr) (Pan et al. 2020)
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Ecosystem Evapotranspiration

The humidity response of stomata, leading to increased
r, in response to increased D, tends to close stomata
further as a consequence of the drying of the boundary
layer caused by the initial closing.

The increase in canopy temperature tends to decrease R,
ET is more sensitive to changes in g, in aerodynamically

rough (forests) than aerodynamically smooth (crops)
canopies



Regional Evapotranspiration

Moving beyond the scale of the local ecosystem to the scale of tens to
hundreds of kilometers, two new sets of feedbacks potentially modulate
the effects of increased CO, on stomatal conductance.

These are related to the planetary or convective boundary layer (CBL) and
to the mesoscale circulations generated by contacts between contrasting

surface types.

Trace Gases




