

Methane Emissions offset Carbon Dioxide Uptake in Costal Blue Carbon

Ecosystems

Reporter: Dr. Xianglan Li

College of Global Change and Earth System Science, Beijing Normal University July 28th, 2023

1. Background

2. Point-scale analysis of CH₄ and CO₂ fluxes in mangrove

restoration ecosystems

3. Regional scale assessments of integrated GWPs of CH_4 and CO_2

fluxes in mangrove forests and island forests

4. Conclusions and prospects

Carbon sequestration potentials of coastal blue carbon ecosystems

Coastal and estuarine vegetation act as significant "sinks" for GHGs

Temperature and salinity are important factors on methane emissions

Monitoring carbon fluxes in island forests and mitigation potentials for climate change

The mitigation potential of island forests in mitigating climate change is often overlooked due to their exclusion from ecosystem carbon sink estimation systems, primarily due to geographical limitations.

(Lowry et al., 2021)

The northernmost distribution of the restored mangroves in China

Island forest: Nanji islands national marine nature reserve

Point-scale analysis of CH₄ and CO₂ fluxes in restored mangrove

□ The mangrove restoration acted as both a source of CH₄ emissions and a sink for CO₂ uptake.

□ From April to July, both methane emissions and carbon sequestrations in mangrove communities showed a significant increasing trend. (P<0.01) 。 (Sen Li, 2020)

Diurnal patterns of CH₄ and CO₂ fluxes in restored mangrove

Double-edged sword: Mangrove vegetation played a crucial role as a carbon sink, but it also promoted methane emissions. □ The diurnal variation of CO₂ flux in mangrove communities exhibited a ''U'' shaped curve, with nighttime emissions and daytime uptake.

□ The CH₄ emissions were the lowest during midday. (Sen Li, 2020)

The influence of air temperature on CH₄ and CO₂ fluxes

(Sen Li, 2020)

Regional scale analysis of CH₄ and CO₂ fluxes in restored mangrove

Variations of environmental factors

- ✓ Obvious seasonal and interannual changes
- ✓ PAR: June to July continuous rainy weather, PAR value was lower than the wet season average

Variations of carbon fluxes

- ✓ GPP-PAR; Reco-Tair
- Annual variations in NEE were in correlation with the simultaneous enhancement of carbon sinks.

(Meihui Dduan, 2022)

Wet season: Mar to Sep; Dry season: Oct to Feb

- During the daytime in the wet season, the NEE in mangrove was lower compared to the dry season, indicating a stronger carbon sink function.
- During the nighttime, in the wet season, the
 NEE in mangrove forests was higher compared
 to the dry season, indicating a greater carbon
 source function.
- Higher GPP occurred in the wet season,
 playing great role in controlling the higher
 carbon sink potentials.

(Meihui Duan, 2022)

Interactions between environmental factors and NEE in different time scales

(Xianglan Li, in preparation)

Analysis of CH₄ and CO₂ fluxes in island forest and their GWP

(Liangxu Wu et al., in preparation)

The contributions of CH₄ and CO₂ fluxes in GWP

g CO2-eq m ⁻²							
Туре	GWP _{CO2}	GWP _{CH4}					
Monthly average	-168.78	-15.75					
Max	77.49	-5.33					
Min	-503.41	-35.87					

- GWP_{CO₂} and GWP_{CH₄} had obvious seasonal variations, the uptake rate of CH₄ was higher in January and October due to lower SWC.
- GWP_{total} was dominated by CO₂ uptake.

 GWP_{CO_2} and GWP_{CH_4} accounted for 91.5% and 8.5%, respectively.

(Liangxu Wu et al., in preparation)

Biophysical drivers of GWPs (CH₄ and CO₂) in island forest

♦ GWP_{total} was highly correlated with GWP_{CO₂} (\mathbf{R}_2 =0.98, p≤0.001).

* PAR, Rg, Rn, H, Tsoil, SWC, and Precipitation were the dominated drives.

Assessment of GWPs in mangrove restoration and island forest

Туре	year	CO ₂ GWP	CH ₄ GWP ₂₀	Offset in 20- year (%)	CH ₄ GWP ₁₀₀	Offset in 100- year (%)
		g CO ₂ -eq m ⁻² yr ⁻¹	g CO ₂ -eq m ⁻² yr ⁻¹		g CO ₂ -eq m ⁻² yr ⁻¹	
Mangrove restoration	2020	-2314	982	42.4	337	14.6
	2021	-1705	768	45.0	264	15.5
	2022	-2341	665	28.4	229	9.78
Island forest	2020	-1892	-513	-27.1	-176	-9.3
	2021	-2193	-496	-22.6	-170	-7.8
	2022	-1991	-634	-31.9	-218	-10.9

- Both of them were the atmospheric CO₂ sinks, with comparable integrated GWPs.
- Mangrove restoration acted as CH₄ source, offsetting 28-45% over a 20-year timescale and 10-16% over a 100-year timescale.
- Island forests contributed to the uptake of CH₄, with a GWP accounting for 27-32% of CO₂ over a 20-year timescale

Conclusions and prospects

- ✤ Mangroves and island forests play an important role as CO₂ sinks, with annual average fluxes of 578 and 552 g C m⁻² yr⁻¹, respectively. Mangrove emitted CH₄ (7.44 g C m⁻² yr⁻¹) into the atmosphere, while island forest acted CH₄ sinks (5.06 g C m⁻² yr⁻¹). Over a 20-year timescale, CH₄ emissions offset 28-45% in restored mangrove, while island forest contributed 91.5% and 8.5% to the GWP of CO₂ and CH₄, respectively.
- * Mangrove provided a significant pathway for CH_4 emissions to the atmosphere, and air temperature was the main controlling factors influencing CH_4 emissions.
- Conducting long-term monitoring of CH₄ and CO₂ dynamics in blue carbon ecosystems in southern China will provide crucial data and theoretical basis for establishing carbon budget estimation systems and achieving "nature-based solutions" carbon neutrality targets.

Thank you!

Email: xlli@bnu.edu.cn

