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The group of ecological climatology and global change (ECGC)

The focuses:
> ldentify and quantify (contributions) the drivers of

vegetation changes over regional and global scales

» Quantify the key fluxes of the terrestrial ecosystems
at reginal and global scales
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the Paired Land Use Experiments (PLUE) theory in driver identification of regional vegetation change
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Abstract: How to identify the drivers of regional-scale vegetation
change, especially to distinguish between climate change and human
activities remains a great challenge. Modeling studies show that the CO2
fertilization effect plays a dominant role, but the significant greening
contribution of farmland areas at the global scale seems to indicate that
land management changes (LMC) activities have a huge impact. This
study proposes the theory of Paired Land Use Experiment (PLUE), which
selects areas with large differences in land management and consistent
climate change to achieve "control” of climate change and attribute the
difference in vegetation change to on the LMC. The PLUE method can
directly identify land management activities other than climate elements
from observations at the regional scale, which is helpful for further
research on the driving forces of long-term vegetation change trends.

Have we known the drivers of greening/browning well?

Modelmg vs Observational
Analysis: Both made significant
= P contributions, but the problem has
not been well solved yet, why?
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Advantages: easy to quantify each driving factor by controlling
variables and setting different scenarios
Disadvantages: lack or incomplete process cannot be fully
expressed, which is especially prominent in land management
changes

Observational Analysis
Advantages: Based on observational data, contains all real
processes
Disadvantages: Difficult to both identify and quantify drivers

the Paired Land Use Experiments (PLUE) theory

Scientific question
Is it possible to identify and quantify the climatic and anthropogenic factors in the drivers of
vegetation change from observations at the regional scale?
Our hypothesis
If the climate change in a certain area is basically the same, and there are significant differences in
land use or land management, the influence of human factors can be identified and the contribution
can be guantified under the condition of controlling "climate change".

A 1

~ The premise of PLUE is essentially based on the
“natural experiment” approach: to infer and
quantify the effects of a treatment while other
independent variables are controlled based on a
natural configuration. In the case of PLUE, we try
to assess the effects of land management on the
dynamics of LAl by controlling climate factors

v under a natural cross-border configuration.
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Schematic diagram of the Paired Land Use Experiment

The general procedure of PLUE can be described as follows: select a region which is large encugh but still with a
roughly homogeneous climate environment. Two parts of such a region have different land use practices, and
typical examples are natural vegetation and managed lands (such as croplands), or two managed lands with
different intensity levels. At least one part has a stable land cover type.
Therefore, these two regions could be treated as a PLUE with identical climate change forcing. The difference of
vegetation response to environment could be contributed to land use change and land management change.
Two objectives are expected: first, to identify the significance of the impact of human activities with natural
control experiment of climate environment change. Second, to quantify the contributions of human activities
by abstracting natural variations (a base line of the climatic influences). While, the premise required by the
second goal is not easy to achieve in reality and is based on certain assumptions.
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CASE 1, the browning of Syria?
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The PLUE analysis over the
Khabur River basin across Syria
and Turkey

{a) The percentage of tha tetal cropland area used far
engation far the reference year af 2005, (b} The
Khabur Awer basin anc cropland distribution. The
vertex coordinates of the parollelogram are [37.5N,
£0.5E), [36.75N, 41E|, [37.25N, 39.5E] anc [36.5N, &
E|. {c} Annual V1 series of cropland on the Synan side
and the Turkish sice wath linzar fitting. (d) £V1 trencs
of each manth of cropland on the Syrian side. (e) EVI
G difference between the Turkish anc Syrian sides of the
—— i basin [Turkey's EVI minus Syria's EVIL (f] EVI trends of
- each month of crepland on the Turkish side.

The LMC triggered by social unrest and civil war in Syria are responsible
for the browning of northern regions. LMC includes insufficient irrigation
and lack of seeds, fertilizers, pesticides and field management
CASE 2, Contrasting Greening Pattern
Across China-Russia Border
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The PLUE analysis over the Sanjiang Plain across China and Russia

the Sanjiang Plain has distinct land management practices across the
border-intensified agricultural development on China side (CNSP) versus
largely little-disturbed natural vegetation on Russia side (RUSP). Different
LMC practices lead to notably different seasonal variability in vegetation
changes. LMC in CNSP side contains dry croplands to paddy fields,
agriculture mechanization and the usage of fertilizer and pesticide.




Current global warming is driven by human

It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes

In the atmosphere, ocean, cryosphere and biosphere have occurred.

Changes in global surface temperature relative to 1850-1900

a) Change in global surface temperature (decadal average)
as reconstructed (1-2000) and observed (1850-2020)
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Figure SPM.1:

b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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History of global temperature change and causes of recent warming.



What Don’t We Know? 2005 &

125 questions: Exploration and discovery

Where do we put all the excess carbon
dioxide?

The 2019 global emissions of carbon dioxide

What happens if all the ice on the planet melts?

If all the ice on the planet melts, sea level will rise 70 maters (230 feat), and every coastal city on the
planat will flood.
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Can we stop global climate change?

Climate change is one of the most pressing,
complex, and frightening challenges facing us today,
and scientists agree that ending it hinges on two
major issues, both of which are now being addressed
The first roadblock is associated with the amount of
climate data we are able to collect and share. We still
{ack a global climate observational system. We also
need more investrment in climate data Infrastructure.
Additionally, we contend with a lack of coordination
and planning, wath diverse actors spanning different
countries, governments (nathonal and local), sectors,
and agencies. Moreover, much of our approach
to climate change has been reactive rather than
proactive. To truly stop climate change, more robust
fisk management systems must be established that
complement and transform the work of environmental
scentists, before further chimate cnsas unfold.

The other major barner we must overcome to stop
climate change s our dependence on fossil fuels for
most of our energy needs. If we can harness and utiles
more green energy, such as solar, wind, geothermal,

and nuclear, we have a fighting chance. Many nations,
including China, the United States, and others around
the world, are financing advanced research In this
realm, aithough some of the concermns yet to be
addressed include adjusting electrical grids to be able
to manage the unpredictability of green energy as well
as energy storage.

But we are not hobbled. We are in the midst of an
extraordinary technological revolution in data science,
computing, and energy science, We know how to build
tools to collect valuable environmental data. Computer
scientists are working with ecalogists to apply unique
artificial intelligence, deep-learning, and machine
learning techniques to Earth observation systems. And
more funding for green eneray research is becoming
available across sectors. We have the capability: We
can reduce our dependence on fossil fuels. We can
practice better stewardship of the planet. With the help
of the public and professionals alike, we may be able to

(CO,) were estimated to be approximately 33.1
billion metric tons, according to the U.S. Energy
Information Administration, for which the United
States is responsible for 15.4%. CO, arrives

in the atmosphere mostly by two means:
natural sources, such as human and animal
exhalation and waste, and human actions,
largely from energy production, such as
burning coal, oil, and natural gas. One

of the chief drivers of climate change

research focuses on geologic and

biologic carbon sequestration methods,
where CO; is stored in underground

geologic formations or in organic

materials such as vegetation, soils, and

woody products, as well as in aquatic
environments. As the U.S. Geological

Survey notes, "by encouraging the growth

of plants—particularly larger plants like trees—
advocates of biologic sequestration hope to
help remove CO, from the atmosphere.”

arrive at a solution that s feasible, useful,
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Carbon cycle research: the flux of each step in the cycle

The target indices of carbon sources and sinks are NEE and NBP, but GPP and NPP
estimates still have huge errors.



Gross Pr‘imar‘y pr‘oducTion (GPP) :GPP is the synthesis of organic compounds from atmospheric or agueous carbon
dioxide. Generally, GPP refers to the total amount of photosynthesis in terrestrial ecosystems.
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look up table of PFTs

Plant functional type (PFT) :is a system used by climatologists to classify plants according to their physical, phylogenetic and phenological
characteristics as part of an overall effort to develop a vegetation model for use in land use studies and climate models, Model parameters are
often assigned separately based on PFTs, the spatial distribution of PFTs is the core input of the model.

Table 2 Mean and standard deviation (SD) of Vi at the growing temperature (Vemarg) and normalized to 25 °C (Femans) for
different plant functional types (PTF) calculated from the TROPOMI and ecological optimality theory (EOT) products in
comparison with two ground-based databases (Smith et al, 2019 and Kattge et al., 2009).

Table 2.2. Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm with NCEP-DOE reanalysis 1l and the

TROPOMI EOT Smith 2019 Kattge 2009 Collection5 FPAR/LAI as inputs. The full names for the University of Marvland land cover classification system (UMD VEG LC) in
= MCDLCHKM dataset (fieldname: Land Cover Type 1) are, Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF),
1 - - - =
PET. fimsolu’s) | Mein D Men D Mcan D hien 5D Deciduous Needleleaf Forest (DNF), Deciduous Broadieaf Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open
7 3236 | 12.51 60.66 719 15370 | 2695 |62.50 |24.70 Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), Grassland (Grass), and Croplands (Crop).
ENF Vematy 7.31 362 | 1368 | 297 1743 |1LI3 dse UMD_VEG_LC | ENF EBF DNF DBF MF CShrub | OShrub | WSavanna | Savanna | Grass | Crop
Vemmas 46.89 13.02 54.55 6.79 45.83 23.27 4380 |[16.83 LUEmax 0.000962 | 0.001268 | 0.001086 | 0.001165 | 0.001051 | 0.001281 | 0.000841 | D.001239 0.001206 | 0.000860 | 0.001044
- (KgC/m*/d/Ml)
EBF Vemaxtg 4422 | 1598 | 5088 (1219 |37.12 | 23.59 Tmin_min (C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00
Vamws | 4438 | 893 | 6050 [ 505 [4482 [2334 [39.10 [11.70 Do snax (C) L D T T L _jaebs e
i VPD_min (Pa) 6500 800.0 6500 650.0 650.0 6500 650.0 650.0 6300 650.0 650.0
DNF Vemasty 10.95 2.58 14.93 209 | 1159 | 6.28 “VPD_max (Pa) 46000 [31000 [23000 [1650.0 [2400.0 [ 47000 [4800.0 [ 32000 31000 | 53000 | 43000
Vosiusiss 44.42 16.42 59.60) 6.31 51.31 25.06 57.70 |21 2.8) SLA (—LAI."KgC) 14.1 259 155 218 215 9.0 115 274 271 375 :3:0.4
i 0 Qn® 20 20 20 20 20 20 20 20 20 20 20
DBF Vematg 1812 | 17.07 | 22.68 1568 |24.31 |20.72 froot_leal _ratio 12 T 7 T 11 0 3 18 K] 76 20
V a2 53.30 13.60 61.37 7.55 50.63 27.75 | 5785 |[19.55 livewood_leaf ratio | 0.182 0.162 0.165 0.203 0.203 0.079 0.040 0,091 0.051 0.000 0.000
= - = = - leal_mr_base 0.00604 | 0.00604 | 000815 | 0.00778 | 0.00778 | 0.00869 | 0.00519 | 0.00869 0.00869 | 0.00698 0.0098
SHR Vemasty 1321 | 1124 | 1576 |(14.54 |31.88 |27.80 froot_mr_base 000519 | 000519 | 0.00519 | 0,00519 | 0.00519 | 0.00519 | 0.00519 | 000519 | 0.00519 | 0.00819 | 0.00819
. 7474 | 22.76 | 69.45 11237 | 8270 |47.86 |7820 |31.10 livewood mr base | 0.00397 | 0.00397 | 0.00397 | 0.00371 | 0.00371 | 0.00436 | 0.00218 | 0.00312 0.00100 | 0.00000 | 0.00000
GRS = ; . 42 27.85 | 21. 2 2 ’ 3 A : A . s ; -
Ve 20 |dely | 44 G il K 495 *: The constant Qi = 2.0 is applied to fine roots and live wood, while for leaves, a temperature acclimation Qo value is used as described
Vems 87.57 1742 62.12 9.59 90.21 32,13 [100.70 |36.60 in Equation.
CRP: | Vewwny | 5483 (37.M4 |239:63 [2672 [42.11 |22:64 Running, S. W., & Zhao, M. (2019). User’s guide daily GPP and annual NPP (MOD17A2H/A3H)

) and year-end gap-filled (MOD17A2HGF/A3HGF) products NASA Earth Observing System
of leaf photosynthetic capacity for ecological and earth system research. Earth System Science

Data, 14(9), 4077-4093.



Question: Does cropland qualify for a single PFT classification?

Fields vary widely in crop characteristics, unlike the natural attributes of other PFTs

V.

The plant types are much more homogeneous than natural ecosystems due to management practice of farmers.

The plant types change much faster than natural ecosystems due to crop rotation schemes used, which means the

land cover type does not uniquely determine plant types as in more natural ecosystems.

Sowing, ploughing and harvesting activities change the ecosystems in croplands abruptly and leave land fallow

for long periods, sometimes even in the growing season.

Multiple cropping is an important way to increase yield and bring unique phenological characteristics.

Agricultural modernization, including pesticide spread, fertilization, seed improvement, and the development of

agricultural machinery.



Are further distinctions required within one PFT??

Question: Does cropland qualify for a single PFT classification?

Fields vary widely in crop characteristics, unlike the natural attributes of other PFTs
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agricultural machinery.



The light use efficiency (LUE) model

The LUE model was built by John Monteith
(Monteith,1972, Monteith and Moss,1977)
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Solar radiation and productivity in tropical ecosystems

JL Monteith - Journal of applied ecology, 1972 - JSTOR

In thermodynamic terms, ecosystems are machines supplied with energy from an ex-temal
source, usually the sun. When the input of energy to an ecosystem is exactly equal to its total ...
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Climate and the efficiency of crop praduction in Britain

JL Monteith - ... transactions of the royal society of London ..., 1977 - royalsocietypublishing.org
.. Such analysis has already been applied to primary production in the tropics (Monteith

1972). This paper contains a similar analysis for Britain, with special em phasis on climatic ...
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Evaporation and environment
JL Monteith - Symposia of the society for experimental ..., 1965 - repository.rothamsted.ac uk

Aturgid leaf exposed to bright sunshine can transpire an amount of water several times its

own weight during a summer day. Rapid evaporation is sustained by a supply of heat from the ...
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Built the look-up table

Types: we divided the cropland into 26 different type based on the survey gridded dataset MIRCA2000(monthly
irrigated and rainfed crop areas; Portmann et al., 2010).

1
RMSE = [ﬁ n=1(GPPcasa — GPPpLyxner)?]?

FLUXNET only can cover 8 types which account about 55% global cropland area. The rest 18 types are from
literature. How?
Convert the parameter

e . . E*GPP_FLUXNET =0.6757 x 8*GPP_Iiterature +0.1252
The citations of Monteith’s two papers in google scholar

Climate and the efficiency of crop production in Britain [and discussion] 6 —
a

JL Monteith, CJ Moss - Philosophical Transactions of ..., 1977 - rstb.royalsocietypublishing.org =4l § ° E
Abstract The efficiency of crop production is defined in thermodynamic terms as the ratio of E E i % ¢ ¢ ¢ 3
energy output (carbohydrate) to energy input (solar radiation). Temperature and water R % 2 5® L % ¢ ¢
supply are the main climatic constraints on efficiency. Over most of Britain, the radiation ... % ¢ "

T ' H 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Cutgd by 2334 v.?elated articles All 7 versions Cite Save . 3 5 7 o9 11 13 15 17 19 21 23 25

crop type ID
Solar radiation and productivity in tropical ecosystems ; b ,
3r R“=0.49

JL Monteith - Journal of applied ecology, 1972 - JSSTOR % *
In thermodynamic terms, ecosystems are machines supplied with energy from an extemal *: 5
source, usually the sun. When the input of energy to an ecosystem is exactly equal to its total % *
output of energy. the state of equilibrium which exists is a special case of the First Law of ... 5
‘Cited by 1244 | Related articles Al 5 versions  Cite Save = 12 25 3 3.5 4 4.5

literature €* (g C MJ-1)



Global Cropland GPP Estimates ID_[croptypes  [GPP(PgCyr) |

Maize 1.545

Rice 1.514
Global cropland GPP in 2000 is 11.05 Pg C. Fodder grasses ~ 1.389
Wheat 1.384
Others perennial  0.795
60} m Cassava 0.612
L Others annual. 0.508
m Sugarcane 0.494
20 Soybeans 0.491
ol - Pulses 0.353
Sorghum 0.272
20F Barley 0.26
-40 Oil palm 0.21
p (- . Coffee 0.158
200 150 100 Millet 0.134
Cocoa 0.132
The spatial distribution of global crop land GPP. gggj o —
Sunflower 0.112
Rye 0.109
Groundnuts 0.105
Potatoes 0.091
Citrus 0.064
Grapes 0.041
Sugar beet 0.04
Date palm 0.001

B giobal 11.05



e 3 Land into 3D tracer transport NDVI into productivity
Miami model (Lieth, 1973)  ,54e) (Fung et al., 1983) model (Goward et al., 1985)
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Ryu, Y., Berry, J. A., & Baldocchi, D. D. (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote
sensing of environment, 223, 95-114.



150 Fig. 3. Time series of annual global photosynthesis and SiF
estimates from different remote sensing based products. SiF
~.-'; -~  datasets present annual anomaly values adopted from (Luo
%) 140 + I et al., 2018). Data sources include: MPI-BGC (Jung et al.,
8 'TE 2010), SVR (Kondo et al., 2015), FLUXCOM (Jung et al.,
TI; 130 - c 2017), MODIS C6 GPP product (Running et al., 2004), PR
‘D “-‘E (Keenan et al., 2016), VPM (Zhang et al., 2017b), GIMMS
2 (Smith et al., 2016), BESS (Jiang and Ryu, 2016), GOME
c 120 = (Joiner et al., 2013), GOSAT (Frankenberg et al., 2011), and
> £
7)) ~  0CO2 (Sun et al., 2017).
o} >
0 ©
£ 110 - £
o o]
g - -0.2 %
o 100 4 T8
T) --03 W .
As can be seen from the gray curve in the
90 L] | 1 1 1 | | .0.4 . . .
1985 1990 1995 2000 2005 2010 2015 right figure, the FLUXCOM estimate
Year . . .
obviously lacks inter-annual fluctuations!
Machine learning —&—— MPI-BGC —a&——  SVR
FLUXCOM ANN FLUXCOM MARS FLUXCOM RF
LUE MODIS C6 : PR —e— VPM —a—— GIMMS
Farquhar model — @9 — BESS
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Ryu, Y., Berry, J. A., & Baldocchi, D. D. (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote
sensing of environment, 223, 95-114.
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. ® Vegetation "greening” generally refers to the trend of increasing
vegetation greenness on an interannual scale. In applications, remote
sensing vegetation indices are often used, including leaf area index
LAl, normalized difference vegetation index NDVI, and enhanced

*ﬁﬁ? vegetation index EVI.

- ® As an important indicator of vegetation productivity, GPP has become

AbF #4748 441982 - 2011, Mao 2016 NCC an indisputable fact that the annual total has increased year by year
with the global greening phenomenon.



Core scientific question: How to improve GPP estimation of large-scale terrestrial ecosystems based on
limited observations?

Two obvious concerns:

» The lack of interannual fluctuations in global GPP estimated by traditional machine learning is

contrary to the objective fact of global greening. How to improve the interannual variation trend of
GPP?

» The functional types of vegetation vary greatly. Whether machine learning training can be trained
iIndependently for different types, especially C4/C3 vegetation types.
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The spatial distribution map of major
global crops released by EarthStat in
2000 was used (Monfreda et al., 2008),
which provides the percentage of
planted area for 175 crop types per
10-km grid cell. The CRO_C4
percentage was calculated by
summing the six CRO_C4 types (corn,
corn forage, sorghum, sorghum forage,
millet, sugarcane)

We used nine PFTs here, including deciduous broad leaved forest (DBF), evergreen needle
leaved forest (ENF), evergreen broad leaved forest (EBF), mixed forest (MF), grassland (GRA),
CRO_C3, CRO_C4, shrub (SHR), and wetland (WET). The 206 flux sites in FLUXNET2015 were

characterized by corresponding PFT colors under different PFTs.
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Figure 3. Scatter density diagram of the overall accuracy in plant functional type (PFT) training models and nonPFT
training models. (a) PFT training model accuracy with 80% random selection and 20% testing sets. (b) NonPFT training
model accuracy with 80% random selection and 20% testing sets. (c) PFT training model accuracy with entire sites moved

(~20%) into testing sets. (d) NonPFT training model accuracy with entire sites moved (~20%) into testing sets. The red lines
indicate the best linear fits determined by ordinary linear regression, and the black lines represent the 1:1 line. RMSE unit is

gCm2d.
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By distinguishing the CRO_C3 and CRO_C4 in the
CRO and training, different RF model based on
each PFT could avoid systematic errors caused by
differences in vegetation and growth
environments effectively. In addition, the
improvement of the overall training accuracy of
the model, it also provided an opportunity for
optimizing the prediction of GPP at the global

scale.
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The contribution of LAl is larger than other
meteorological features among all PFTs, with an
average contribution of 41.73%.

Comparison of feature contributions of nine plant functional type (PFT)
training models. (a)—(i) Contribution of meteorological and remote
sensing variables to the corresponding PFT.



Details of input datasets used to drive RF model and GPP datasets.<

Datasets<’ Variables< Spatial. Tempm:al Temporal
resolutions<’ resolutions<’! coverage<’
FLUXNET2015¢ GPP, SSRD, T2M, TP, VPD<' ' site scale<’ monthly< site-specifice’
MCD12C1« land cover<’ 0.05 degree<’ | yearly< 2001 - 2019«
Harvested Area and corn, corn forage,
Yield for 175 Crops year | sorghum, sorghum forage, | 10 kilometers<' | yearly<’ 2000+
2000+ millet, sugarcane<’
ERAS5_Land<’ SSRD, T2M, TP, VPD+« 0.1 degree<’ monthly< 1999 — 2019+«
GEOV2+¢ LAI< 1 kilometer<’ 10 days<’ 1999 — 2019+«
MCD15A2H¢« LAI< 500 meters<’ 8 days«’ 2003 - 2019«
MOD17A2H< GPP< 500 meters<’ 8 days«’ 2001 - 2020«
FLUXCOM_GPP+< GPP+< 0.5 degree«’ monthly<’ 1999 — 2013«
Revised EC LUE_GPP<' | GPP< 0.05 degree<’ | 8 days<’ 1999 — 2018+«
NIRv_GPP< GPP+ 0.05 degree<’ | monthly< 1999 — 2018+«
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Revised EC_LUE_GPP
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ECGC_GPP has the highest correlation
with FLUXCOM_GPP

MODIS
GPP

GPP

Revised EC_LUE NIRv
GPP

B 08 0.6 04 02 0 0.2 0.4 0.6 08 1

kg C m2yr'
I L i I
-1 -0.8 -0.6 -04 -0.2 0 0.2 04 06 0.8 1

Spatial comparison of 5 sets of GPP datasets from 2001-2013. The diagonal line is the mean distribution of each
data set. Below the diagonal is the difference between the two data sets, and the horizontal minus vertical is used.
On the diagonal is the spatial distribution of the correlation coefficient of the pairwise data sets.
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Compare with other GPP datasets
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Compared with FLUXCOM_GPP, the R2
of ECGC_GPP has increased by 0.05,

# reaching the highest value of 0.65

E&} among the five sets of GPP data.
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ECGC_GPP shows a higher GPP in

the croplands than FLUXCOM.

» 76.38% cropland grids increased

> total cropland GPP increased by
18.68%
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The spatial difference maps for ECGC_GPP and FLUXCOM_GPP data sets from
2001 to 2013 (ECGC_GPP minus FLUXCOM_GPP).



LAl contributions
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By calculating the spatial partial correlation coefficient of each feature and GPP, and get the main
contribution space map. It can be seen that LAl estimates the main driving variables in the GPP model
for the global PFT.
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In the PFT training model, LAl is the feature with the largest relative contribution, and the CO2
fertilization effect has a certain representation in LAl. Therefore, by comparing the global annual change
trends of LAl and GPP, it can be found that the global annual change trends of LAl and GPP are highly

consistent.
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Long-term trends of GPP
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Abstract The loag-term monitoring of gross primary produsction (GPP) is crucial 1o the assessment of the
carbon cycle of terrestrial ecosystems. In this study, u well-known machine learning model (mndom forest,

RF) is estublished 1o reconstruct the global GPP data set numed ECGC_GPP. The mode! distinguished nine
functional plant types, including C3 and C4 crops, using eddy fluxes. meteorological variables, and leaf area
index (LA as training dista of RF model, Based on ERAS_Land and the corrected GEOV2 data, global
monthly GPP data set at a 0.05" resofution from 1999 1o 2019 was estimated. The results showed that the

RF model conld explam 74.81% of the monthly variation of GPP in the testing data set, of which the averuge
contribution of LAI reached 41.73%. The average annual and standard deviation of GPP during 1999-2019
were 117,14 2 151 Pg C yr~', with an upward trend of 0,21 Pg C yr~* (p < 0.01), By using the plant functional
type classification, the underestimution of cropland is improved. Therefore, EOGC_GPP provides reasonable
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Idea: Improve global estimates by continuously optimizing
regional-scale estimates
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