Beyond Carbon and Toward a Holistic Understanding of Terrestrial Ecosystems in Regulating Climate

Jiquan Chen

Landscape Ecology & Ecosystem Science Michigan State University Email: jqchen@msu.edu

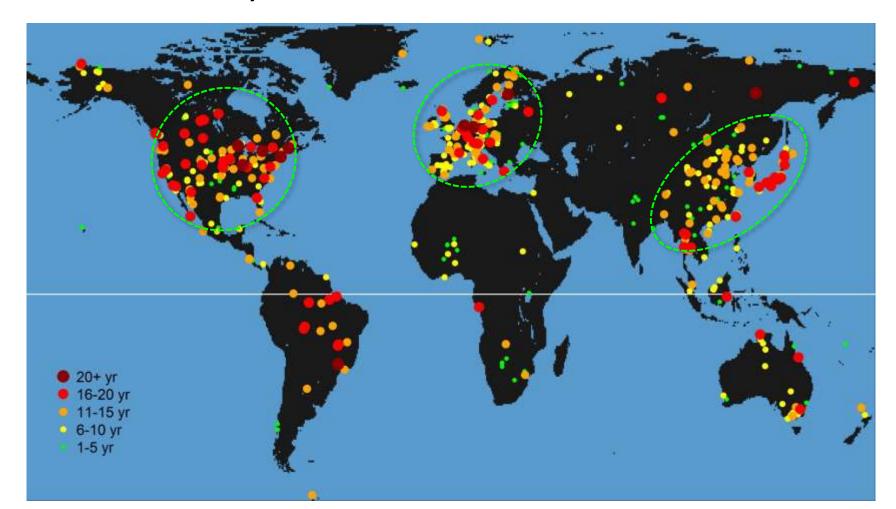
July 27, 2023 The 19th USCCC Annual Meeting

Measuring photosynthesis: chamber-based at leaf level (snapshots)

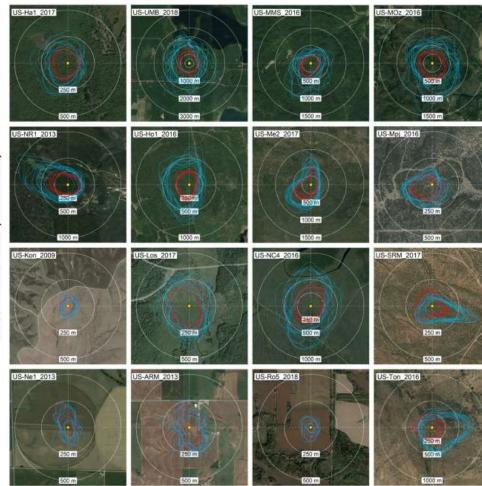
LiCor6400 (LI6800) $CO_2 \& H_2O$ concentration PAR, temperature

Measuring photosynthesis: chamber-based at leaf level (continuous)

Eddy Covariance (EC) Technology for direct measurement of net exchange of trace gases, momentum, energy, and other materials at ecosystem level

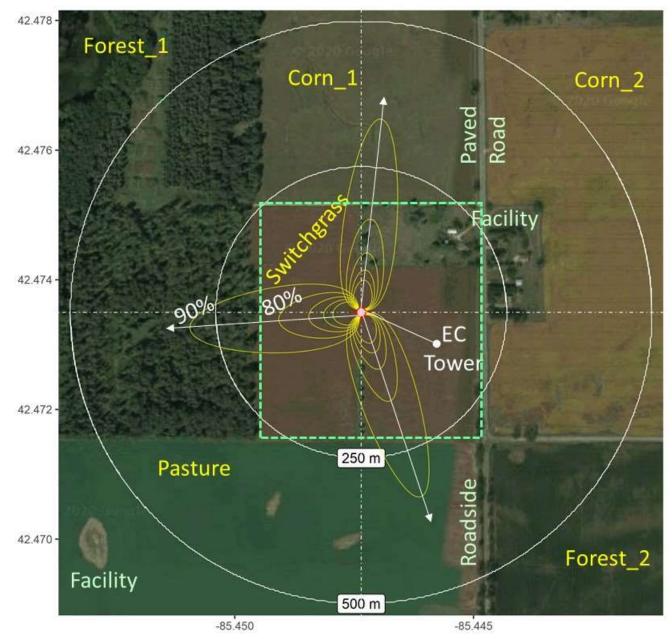

- ~2000 EC towers since the first one at the Harvard Forest in 1989
- Lots of experience, tools, maintenance protocols, data process, etc.
- Many orchestrated networks (FLUXNET, ChinaFLux, AmeriFlux, USCCC, ICOS, etc.)
- Beyond CO₂ and H₂O: CH₄, N₂O, CO, NOx, aerosols, Albedo, etc.
- Goodwill for data sharing => global synthesis and knowledge development
- Communication and coordinated efforts (e.g., FLUXNET, AmeriFlux, USCCC, etc.)
- Many more

J-Rover tested at the Kellogg Biological Station (KBS) in 2003

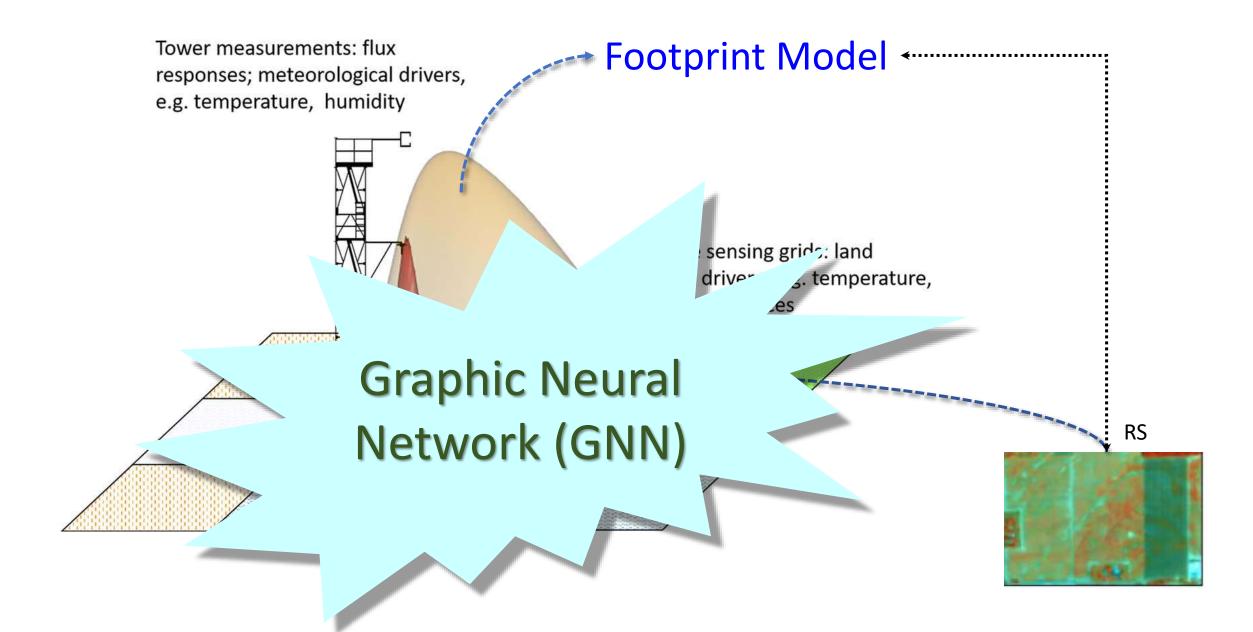


- 1) 2000⁺ EC towers are not enough to cover all ecosystems, with their distributions seriously skewed
- 2) Most tower sites are not large enough
- 3) Our understanding of the regulation mechanisms on C fluxes is based on a few biophysical models, often empirical, such as Q10, Michaellis-Menten, Farquar, Penmen-Monteith, etc.
- 4) There lack reliable models for CH_4 and N_2O fluxes
- 5) Life Cycle Assessment (LCA) of carbon flux is urgently needed because *in situ* NEE **DOES NOT** reflect C sequestration

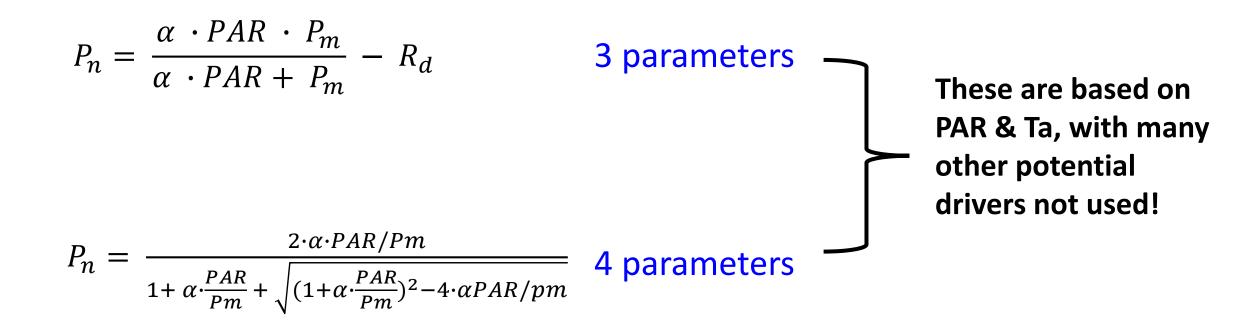
 2000⁺ EC towers are not enough to cover all ecosystems, with their distributions seriously skewed


• Most sites are not large enough

Distance from tower (East-West)


Chu et al. 2021. Ag. For. Met.

A switchgrass cropland at the Kellogg Biological Station



Distance from tower (North-South)

Spatial information

 Our understanding of the regulation mechanisms on C fluxes is based on a few biophysical models, often empirically tried, such as Q10, Michaellis-Menten, Farquar, Penmen-Monteith, etc.

Yet, we have dozens of other variables collected at an EC tower, but not used

inbox - inchen@mu.edu - Outloo

N

	utoSeve 💽 O	0日9-	$\overline{C}^{(1)} = \overline{V}$									AGR-C-FI	- Excel						_		Chen, Jiquar	0	1 7	ø ×
Fil	e Home	insert	Page Layou	t Formuk	as Data	Review	Vinv He	lp ACRO	eat ,0	Search												1	Share 🛛 🖓 🖓	comments
FS	•		√ fr	0.753518547	938533																			
1	A	В	С	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R	S	т	U	v	W	x
1	CO2	H2O	FC	LE	н	USTAR	WD	ws	ZL	U_SIGMA	V_SIGMA	W_SIGMA	PA	T_SONIC	SW_IN	TA	RH	VPD	SWC	TS_1_1_1	TS_1_2_1	TS_1_3_1	G_1_1_1	G_2_1_
2	-1.33163	-1.08039	0,20826	-0.65045	-0.3864	-0.71644	1,01033	0.13426	0.02564	-0.55868	-0.45544	-0.53	0.06022	-1.51739	-0.49113	-1.15501	0.69957	-1.51E-1	2 -1.65883	-1.15294	-1.20357	-1.20294	*****	5.53E-1
3	-1.31099	-1.08093	0.21274	-0.64188	-0.39044	-0.64415	0.89945	0.14395	0.02393	-0.38259	-0.44898	-0.4245	0.06743	-1.5163	-0.49113	-1.15792	0.82335	-1.51E-1	2 -1.65908	-1.15338	-1.2036	-1.20384	nunnunn	5.53E-1
4	-1.31823	-1.07857	0.19566	-0.69279	-0.38757	-0.59779	0.91271	0.13965	0.02192	-0.06104	-0.25988	-0.30364	0.0835	-1.5123	-0.49113	-1.15789	0.88849	-1.51E-1	2 -1.65921	-1.15386	-1.20366	-1.20485	ununnu	5.53E-1
5	-1.32445	-1.07636	0.2114	-0.66502	-0.39211	-0.75352	0.87764	-0.04149	0.02913	-0.48234	-0.49185	-0,44475	0.08776	-1.51423	-0.49113	-1.15474	0.91455	-1.51E-1	2 -1,65955	-1.15429	-1.20372	-1.20583	*****	5.53E-1
6	-1.27446	-1.10439	0.20259	-0.65006	-0.36522	-0.81379	0.94443	-0.18645	0.02274	-0.67411	-0.56458	-0.58614	0.11651	-1.50978	-0.49113	-1.15613	0.96016	-1.51E-1	2 -1.65992	-1.15472	-1.2038	-1.20676	пинини	5.53E-1
7	-1.27609	-1.08608	0.24342	-0.67469	-0.3704	-0.65298	0.82224	-0.12988	0.01969	-0.46047	-0.65562	-0.61652	0.13264	-1.50491	-0.49113	-1.15424	1.05788	-1.51E-1	2 -1.66028	-1.1551	-1.20388	-1.2076	ниннинн	5.53E-1
8	-1.28577	-1.07156	0.21735	-0.65968	-0.36709	-0.77267	0.87341	-0.21379	0.02199	-0.56477	-0.63283	-0.57762	0.165	-1.48634	-0.49113	-1.15047	1.08394	-1.51E-1	2 -1.66016	-1.15543	-1.20397	-1.20843	anuanua	5.53E-1
9	-1.28181	-1.06418	0.25623	-0.659	-0.35861	-0.69098	0.85382	-0.18887	0.01756	-0.59138	-0.66928	-0.76986	0.16329	-1,47289	-0.49113	-1.13273	1.12954	-1.51E-1	2 -1.66027	-1.15571	-1.20406	-1.20918	<i>иниции</i>	5.53E-1
10	-1.26209	-1.05564	0.23526	-0.67033	-0.38786	-0.73949	0.90857	-0.06476	0.02713	-0.32829	-0.63789	-0.70622	0.16278	-1.45627	-0.49113	-1.11646	1.12303	-1.51E-1	2 -1,65999	-1.15592	-1.20414	-1.20983	*****	5.53E-1
11	-1.17878	-1.07217	0.31781	-0.70222	-0.36054	-0.75823	1,11139	0.31262	0.01938	-0.4805	-0.26807	-0.53684	0.1772	-1.43119	-0.49113	-1.09998	1,11651	-1.51E-1	2 -1.65981	-1.15609	-1.20423	-1.21034	*****	5.53E-1
12	-1.23975	-1.05215	0.21834	-0.65902	-0.42384	-0.62297	1.19547	0.41911	0.03011	-0.5623	-0.53115	-0.56948	0.19072	-1.41414	-0.49113	-1.0777	1.12303	-1.51E-1	2 -1.65979	-1.15629	-1.20436	-1.21082	nnunnu	5.53E-1
13	-1.27862	-1.0419	0.21982	-0.67107	-0.45694	-0.72255	1.27272	0.15033	0.0455	-0.81087	-0.58894	-0.77831	0.20237	-1.41311	-0.49113	-1.05952	1.06439	-1.51E-1	2 -1.66048	-1.15642	-1.20447	-1.21123	unuunuu	5.53E-1
14	-1.28725	-1.04351	0.20295	-0.66739	-0.44479	-0.80909	1.26473	0.10227	0.05171	-0.92246	-0.59163	-0.85413	0.23618	-1.41715	-0.49113	-1.05676	1.00576	-1,51E-1	2 -1,66107	-1.15655	-1.20458	-1.21159	*****	5.53E-1
15	-1.28508	-1.04378	0.22771	-0.65918	-0.44638	-0.73147	1.26653	0.23771	0.04334	-0.71002	-0.65186	-0.72204	0.26977	-1.41735	-0.49113	-1.06016	0.94713	-1.51E-1	2 -1.66131	-1.15675	-1.20466	-1.21191	пиннин	5.53E-1
16	-1.27218	-1.05027	0.16516	-0.64335	-0.41652	-0.48184	1.31002	0.37729	0.02348	-0.5401	-0.30199	-0.63455	0.29389	-1.40745	-0.49113	-1.06045	0.90152	-1.51E-1	2 -1.66206	-1.15694	-1.20475	-1.21228	ununuu	5.53E-1
17	-1.31637	-1.0421	0.2256	-0.66848	-0.48327	-0.30275	1.37553	0.30931	0.02601	-0.48656	0.11689	-0.38497	0.30109	-1.40863	-0.49113	-1.04987	0.95364	-1.51E-1	2 -1.6621	-1.15711	-1.20486	-1.21264	annanna	5.53E-1
18	-1,33857	-1.04641	0.17993	-0.66207	-0.48748	-0.19239	1,37229	0.35325	0.02346	-0.45403	-0.00321	-0.41794	0.32639	-1.41097	-0.47562	-1.05005	0.82335	-1.51E-1	2 -1.66207	-1.15729	-1.20495	-1.2129	******	5.53E-1
19	-1.34727	-1.0468	0.17327	-0.65797	-0.43722	-0.15511	1,38836	0.28219	0.01909	-0.54159	0.08863	-0.42697	0.35104	-1.41337	-0.39411	-1.05155	0.6279	-1.51E-1	2 -1,66229	-1.15744	-1.20503	-1.2132	*****	5.53E-1
20	-1.35412	-1.05012	0.15515	-0.64495	-0.42323	-0.18622	1,39377	0.41873	0.01846	-0.19716	0.27733	-0.20373	0.39025	-1.41066	-0.19692	-1.04494	0.52367	-1.51E-1	2 -1.66182	-1.15749	-1.20511	-1.21324	unnunu	5.53E-1
21	-1.36204	-1.05128	0.24916	-0.61292	-0.39604	0.06939	1.38584	0.46948	0.01473	0.00847	0.19154	-0.20621	0.41984	-1.40214	-0.09917	-1.03303	0.46503	-1.51E-1	2 -1.66128	-1.15744	-1.20516	-1.21313	ununnu	5.53E-1
22	-1.36195	-1.05314	0.23441	-0.6272	-0.3207	-0.14396	1.46961	0.02468	0.01079	-0.24341	0.34729	-0.21697	0.46194	-1.38789	0.03712	-1.01694	0.31519	-1.51E-1	2 -1.66036	-1.1572	-1.2052	-1.21271	*****	5.53E-1
23	-1.35814	-1.06204	0.20793	-0.56398	-0.31871	0.2657	1.52937	0.48406	0.0113	0.46439	0.92893	0.20107	0.4869	-1.37552	0.37781	-0.98144	0.12627	-1.51E-1	2 -1.65941	-1.15673	+1.20519	-1.21181	*****	5.53E-1
24	-1.34225	-1.06619	0.15699	-0.55845	-0.27413	-0.29881	1.60125	0.2855	0.0059	0.27927	0.44585	0.50036	0.47142	-1.36744	0.63316	-0.95876	-0.09524	-1.51E-1	2 -1.65886	-1.15609	-1.20514	-1.21062	nnunnun	5.53E-1
25	-1.32857	-1.06819	0.17355	-0.54997	-0.29903	-0.03121	1.49601	0.45565	0.00978	0.31139	0.97223	0.22582	0.46352	-1.36657	0.5235	-0.9347	-0.1669	-1.51E-1	2 -1.65895	-1.15539	-1.20495	-1.20937	unuunuu	5.53E-1
26	-1.34652	-1.08868	0.03577	-0.59923	-0.46241	-0.94188	-2.21564	-0.09443	0.08642	0.1246	0.37294	0.40987	0.44319	-1.3805	1.31642	-0.92233	-0.48612	-1.51E-1	2 -1.65831	-1.15463	-1.20492	-1.20803	*****	5.53E-1
27	-1.37105	-1.10663	0.00824	-0.56096	-0.44678	0.36578	1.47152	0.39606	0.01521	0.01566	0.84687	0.2423	0.40708	-1.38217	0.9495	-0.90059	-0.66202	-1.51E-1	2 -1.65844	-1.15394	-1.20487	-1.20684	*****	5.53E-1
28	-1.35299	-1.11808	0.06543	-0.57017	-0.39693	-0.09566	1.654	0.17115	0.01577	0.21209	0.6099	0.42011	0.38112	-1.37521	1.66561	-0.86454	-0.90958	-1.51E-1	2 -1.65859	-1.15309	-1.20479	-1.20561	<i>nnuunu</i>	5.53E-1
29	-1.35201	-1.12382	0.08855	-0.61062	-0.53396	-0.61455	1.63344	-0.03029	0.05224	0.13983	0.57094	0.17522	0.36045	-1.3606	1.33536	-0.86691	-1.11154	-1.51E-1	2 -1.65881	-1.15235	-1.20466	-1.20443	ununun	5.53E-1
30	-1.34951	-1.1335	0.08594	-0.5607	-0.4916	-0.23099	1.52991	0.26576	0.02475	0.15061	0.83253	0.17194	0.36158	-1.34984	0.84756	-0.81974	-1.24184	-1.51E-1	2 -1.65895	-1.15173	-1.20455	-1.20354	*****	5.53E-1
31	-1.36669	-1.143	0.11758	-0.4494	-0.49695	0.7041	1.45944	1.2324	0.01491	0.76157	1.67316	0.60429	0.39043	-1.3646	0.82323	-0.87892	-1.20926	-1.51E-1	2 -1.65978	-1.15117	-1.20427	-1.20266	*****	5.53E-1
32	-1.36998	-1.14371	0.22882	-0.48948	-0.54118	0.79775	1.42781	1.27964	0.01532	0.69606	1.16249	0.44256	0.4094	-1,36999	0.46369	-0.90837	-1.09851	-1.51E-1	2 -1.66074	-1.15074	-1.20397	-1.20209	<i>nnnnnn</i>	5.53E-1
33	-1.39546	-1.22231	0.53891	-0.52415	0.33388	0.5442	1.46024	0.73799	-0.00378	0.29895	0.67454	0.20887	0.4362	-1.37612	0.03096	-0.94812	-1.04639	-1.51E-1	2 -1.66153	-1.15055	-1.20423	-1.20179	ниппипп	5.53E-1
34	-1.38444	-1.15088	0.16286	-0.47496	-0.4803	0.29755	1.47776	0.6703	0.01663	0.08857	0.7855	0.27023	0.46301	-1.39106	-0.12386	-0.97878	-0.88352	-1.51E-1	2 -1.66226	-1.15047	-1.2041	-1.20146	*****	5.53E-1
	The second	AGR-C-FC	۲																					

S

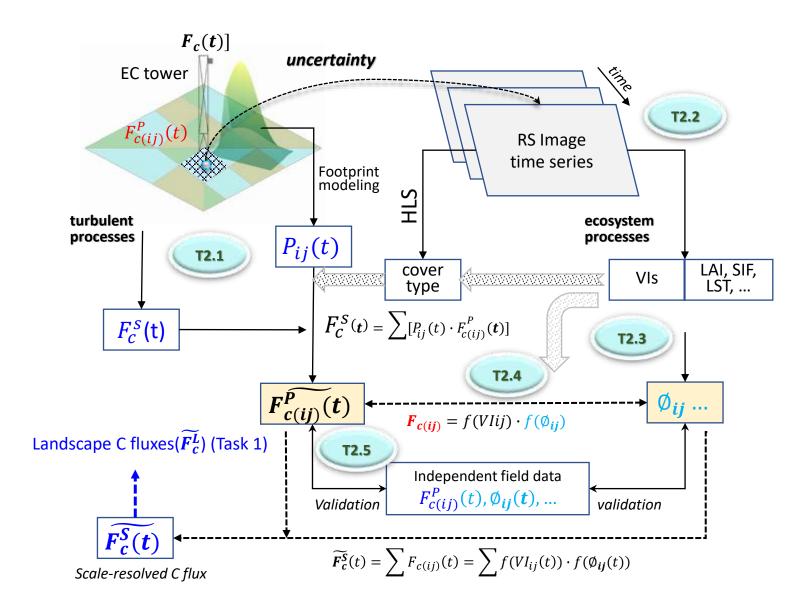
EN - 🍇 🗱 all 🕕 7:49 AM

Opportunities

1. Rich data

EC Towers	Biometric	RS					
Ta, VDP, Soil,	LAI, height,	EVI, cover,					
turbulence,	species,	spatial Ms,					
	density,	DEM,					

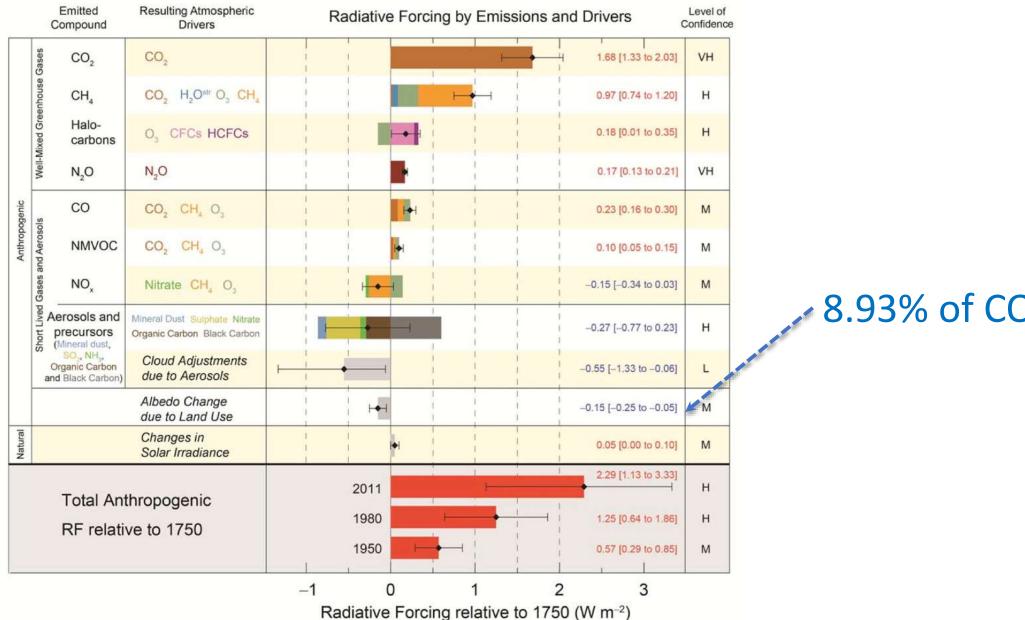
All contribute to the magnitude and dynamics of fluxes


2. Evolving analytical tools

Mechanistic and/or empirical explorations

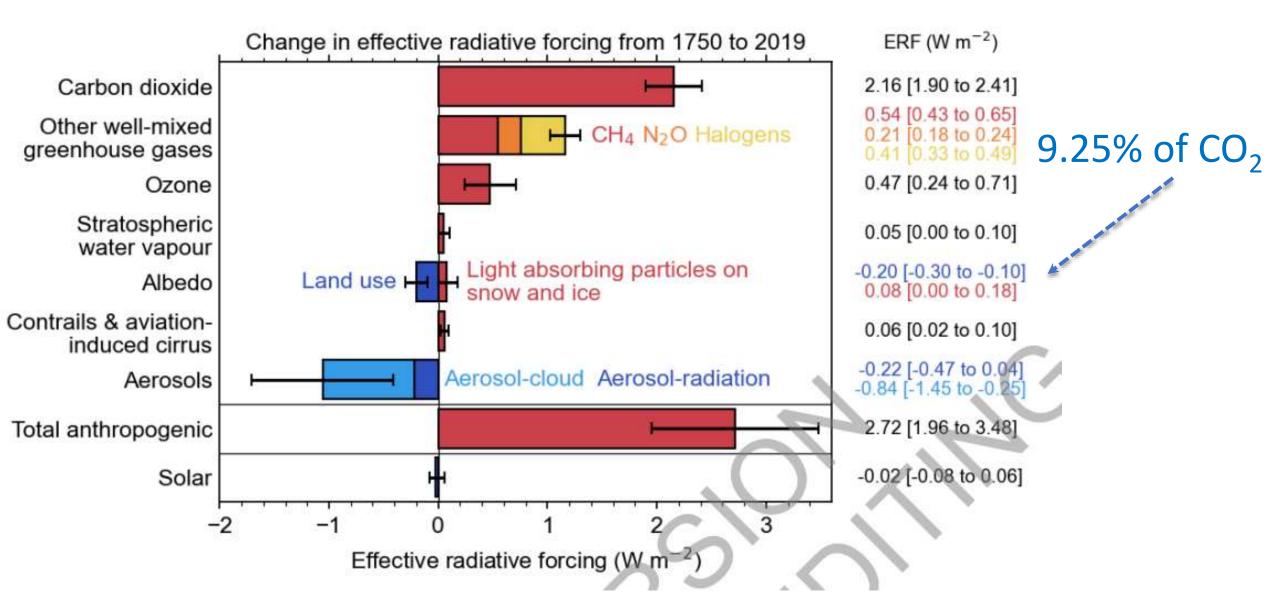
Accurate predictions of fluxes and underline regulations

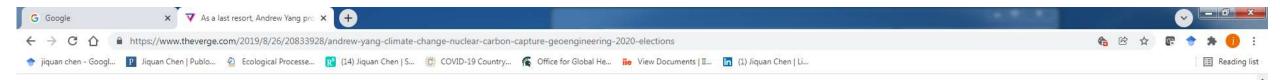
A conceptual framework to understand EC fluxes with footprint models and spatial databases (RS) using Deep Learnings (RNN and GNN)



• There lack reliable models for CH₄ and N₂O fluxes

Knox et al. 2019; Delwiche et al. 2021). The growth in available CH_4 data can help improve bottom-up estimates of regional-to-global wetland CH_4 sources (Treat et al. 2018; Peltola et al. 2019; Rosentreter et al. 2021) but this requires data processing standards that ensure eddy covariance CH_4 flux data products are of the same quality and provenance as carbon dioxide (CO_2) and energy fluxes (e.g., FLUXNET2015; Pastorello et al. 2020). Gap-filling is a particularly


Irvin et al. 2021. https://doi.org/10.1016/j.agrformet.2021.108528


Contributions of major warming/cooling species (IPCC 2013)

8.93% of CO₂

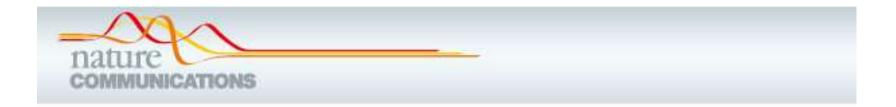
Contributions of major warming/cooling species (IPCC 2021)

SCIENCE \ ENVIRONMENT \

As a last resort, Andrew Yang proposes space mirrors to save the planet

The plan is already raising some eyebrows By Justine Calma | @justcalma | Aug 26, 2019, 5:26pm EDT

f 🈏 🗁 share


e

0

That last part is where Yang's plan starts to get a little wonky, but it's totally on brand for the startup <u>entrepreneur</u>. He's the only candidate whose plan to avert the climate crisis banks on geoengineering (aka developing technologies to manipulate the environment). His plan would invest \$800 million* in researching geoengineering methods like space mirrors. That's right, he's

LOOKING INTO "GIANT FOLDABLE SPACE MIRRORS" THAT WOULD REFLECT THE SUN'S LIGHT AWAY FROM THE EARTH

methods like space mirrors. That's right, he's looking into "giant foldable space mirrors" that would reflect the Sun's light away from the Earth as a "last resort."

ARTICLE

https://doi.org/10.1038/s41467-022-31558-z OPEN

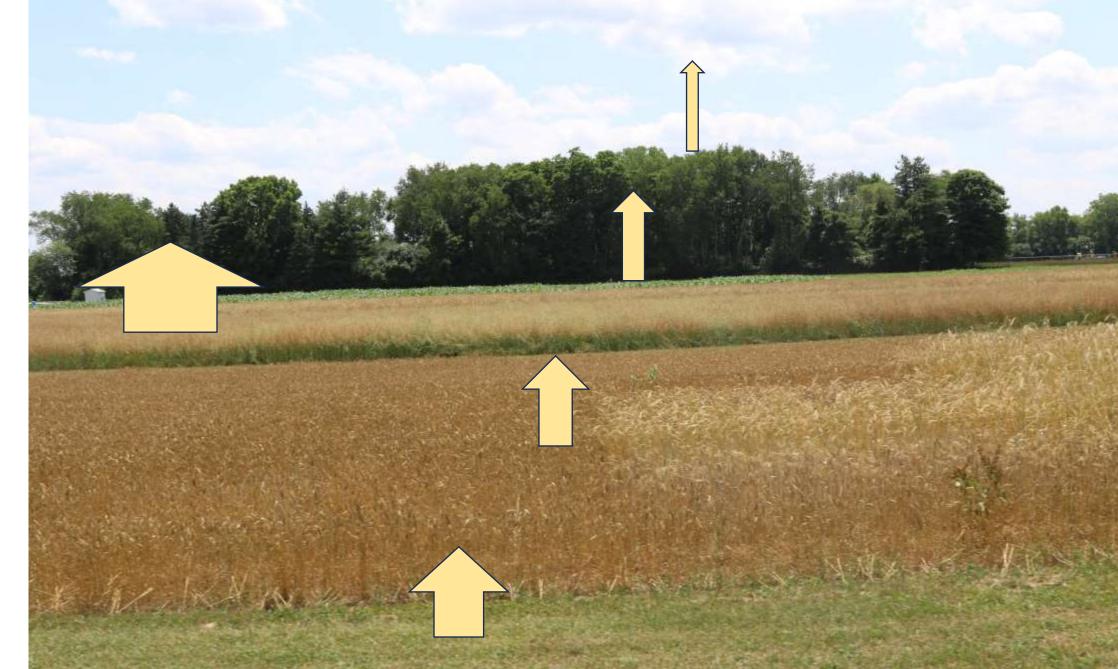
Check for updates

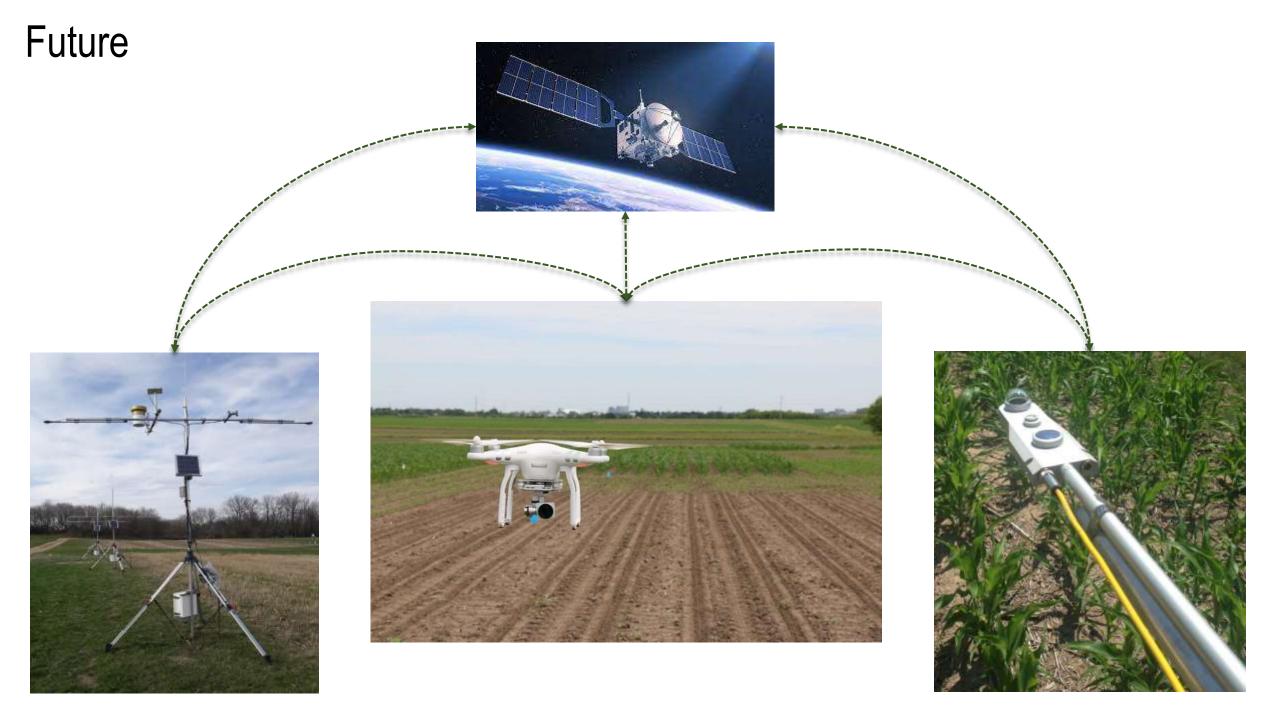
Albedo changes caused by future urbanization contribute to global warming

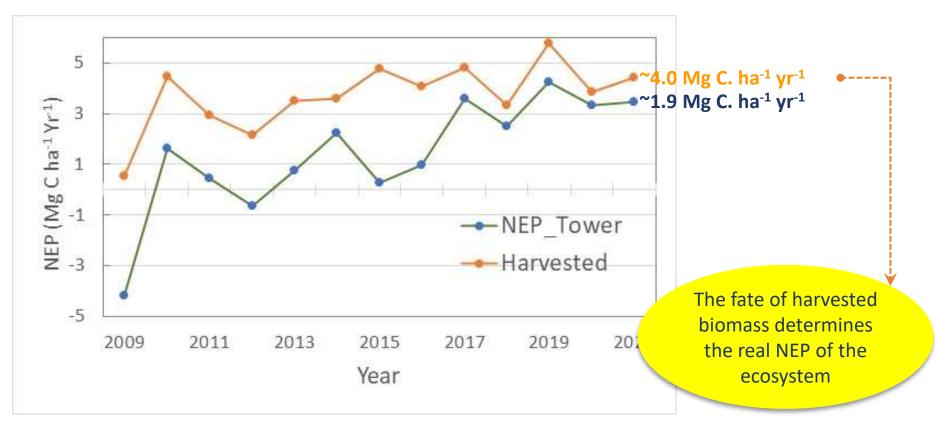
Zutao Ouyang^{1,2^{III}}, Pietro Sciusco², Tong Jiao³, Sarah Feron^{1,4,5}, Cheyenne Lei², Fei Li⁶, Ranjeet John³, Peilei Fan⁸, Xia Li⁶, Christopher A. Williams³, Guangzhao Chen^{10,11}, Chenghao Wang¹ & Jiquan Chen^{2^{III}}

The replacement of natural lands with urban structures has multiple environmental consequences, yet little is known about the magnitude and extent of albedo-induced warming contributions from urbanization at the global scale in the past and future. Here, we apply an empirical approach to quantify the dimate effects of past urbanization and future urbanization projected under different shared socioeconomic pathways (SSPs). We find an albedoinduced warming effect of urbanization for both the past and the projected futures under three illustrative scenarios. The albedo decease from urbanization in 2018 relative to 2001 has yielded a 100-year average annual global warming of 0.00014 [0.00008, 0.00021] °C. Without proper mitigation, future urbanization in 2050 relative to 2018 and that in 2100 relative to 2018 under the intermediate emission scenario (SSP2-4.5) would yield a 100-year average warming effect of 0.00107 [0.00057,0.00179] °C and 0.00152 [0.00078,0.00259] °C, respectively, through altering the Earth's albedo.

LETTER • OPEN ACCESS


Albedo-induced global warming impact of Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops


Michael Abraha^{7,1,2}, Jiquan Chen^{1,2,3}, Stephen K Hamilton^{2,4,5}, Pietro Sciusco^{1,3}, Cheyenne Lei^{1,2,3}, Gabriela Shirkey^{1,3}, Jing Yuan¹ and G Philip Robertson^{2,4,6} Published 6 August 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd Environmental Research Letters, Volume 16, Number 8 Citation Michael Abraha *et al* 2021 *Environ. Res. Lett.* 16 084059


- We converted three 22 year old CRP smooth brome grass fields into no-till corn, switchgrass, or restored prairie bioenergy crops
- The corn and perennial fields had higher annual albedo than the grassland they replaced—causing cooling of the local climate
- The cooling of the corn field occurred solely during the non-growing season—especially when surfaces were snow-covered, whereas the cooling of the perennial fields was more prominent during the growing season
- The annual albedo-induced climate benefits add ~35% and ~78% to the annual biogeochemical benefits provided from the switchgrass and restored prairie fields, respectively, and offset ~3.3% of the annual greenhouse gas (GHG) emissions from the corn field

Albedo-inducted Global Warming Potentials due to land cover and land use changes (LCLUC)

Net Ecosystem Production (NEP) of a corn field in SW Michigan

NEP of a corn field from the flux tower and harvesting

Careful spatial and temporal "**life cycle assessment (LCA)**" is needed for realistic estimates of GWP (i.e., it is about the differences!)

Abraha et al. in prep.

Questions

1) Did IPCC Underestimate This Contrition?

- 2) Was this due to intensified land use and land cover changes that elevated albedo (i.e., more cooling effects)? or
- 3) Is it within the uncertainty of estimate of IPCC?

Further questions

- 1) What are the albedo-induced RF values of different terrestrial ecosystems?
- 2) What are the direct implications for land management, such as credit claims?

Machine Learning in flux studies?

Speech Recognition

Human expertise does not exist

Personalized Medicine

Models must be customized

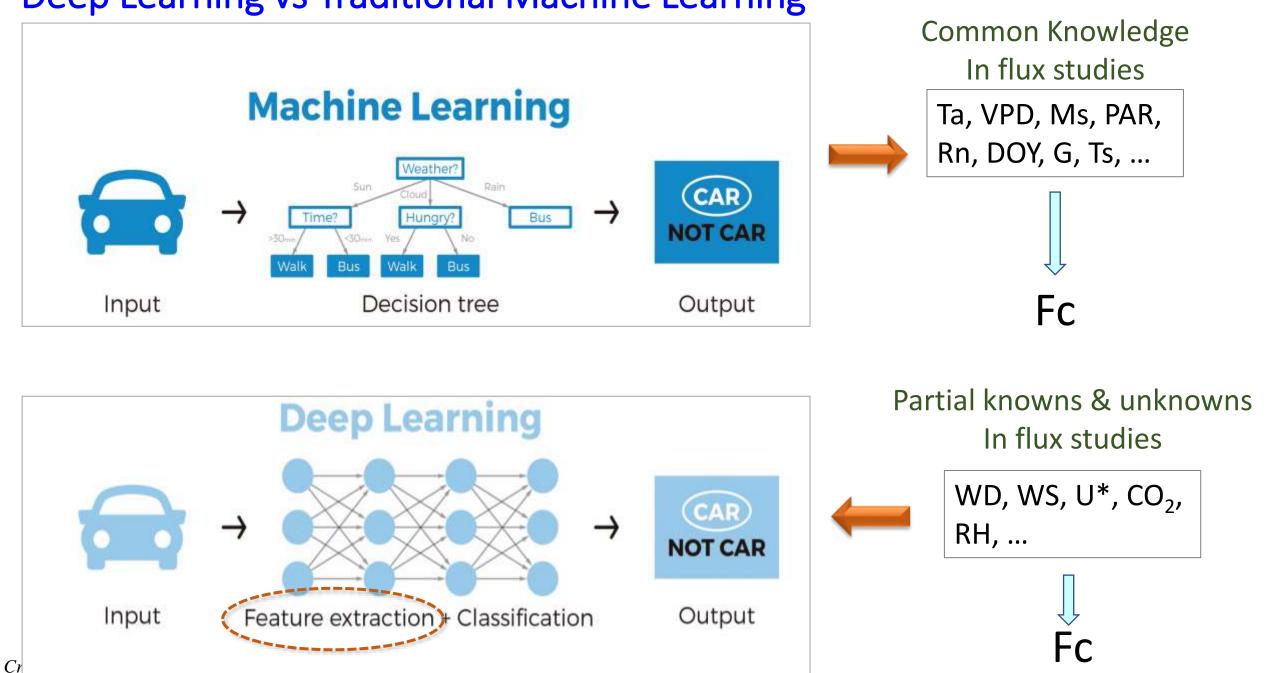
Genomics

Huge amounts of data

Credit: Dr. Jiliang Tang

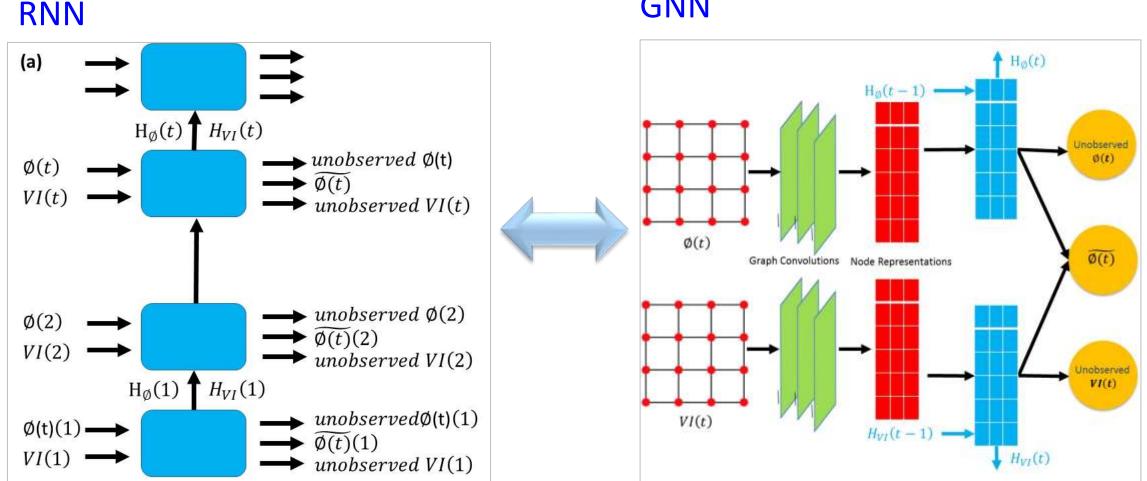
ChatGPT Crash Course

ME How do I... as a beginne


Capabilities

47

Remembers what user said earlier in the conversation

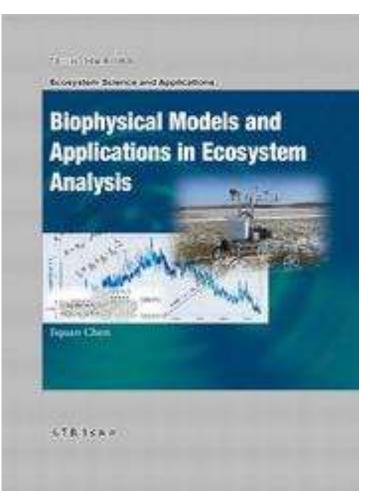

Allows user to provide follow-up

May occasionally

Deep Learning vs Traditional Machine Learning

Proposed architecture of GNN & RNN for estimating model parameters with partially known, or unknown mechanisms by assuming missing values of $\phi_{ii}(t)$ and VI(t) at any giving time (t) and space (i,j) (*i.e.*, nodes)

GNN


In sum,

- Holistic approach by including all warming species (CO₂, N₂O), CH₄, albedo, etc.)
- Best use of all spatial and temporal data
- Effective applications of AI technology

Higher Education Press (HEP)

- Book series with a strong focus on ecology/environment/climate change
- Dr. Yan Guan has a desk

