

第17届中美碳联盟年会 The 17th US-China Carbon Consortium Annual Meeting

基于随机森林算法的城市人口 多尺度空间化研究

汇报人: 周云 指导老师: 马明国教授

研究绪论

Ħ

数据与方法

月

建模与结果

四

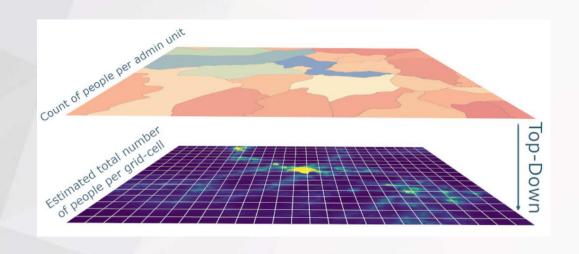
因子定量分析

五

结论与展望

定义问题

基于随机森林算法的城市人口多尺度空间化研究



人口数据空间化:基于人口空间分布模型或采用一定的算法,对人口统计数据进行**离散化处理**,发掘并展现其中隐含的空间信息,以便模拟或再现客观世界的人口地理分布。

背景与应用

> 为什么研究人口? 我国的基本国情使然

> 人口数据重要性? 有助于城市精细化管理

人口是影响碳排放的关键因素之一

> 人口数据现状? 现有人口数据获取难度大、精度低

人口普查现状

人力物力花费大,部分数据不对外公开。

人口数据产品质量不一

现有产品时空分辨率无法满足研究与应用需要。

理论现状

近二十年以来,地理信息技术的发展和移动通信网络技术的普及,使得人口空间化建模的数据来源更加丰富,方法更加智能先进。

分区密度制图

在保证每个多边形的输入要素总量不变时,再根据**空间权重**确定输入要素的**密度和分布**。

权重计算方法

一元线性回归 多元线性回归

地理加权回归 随机森林回归

由于随机森林回归在训练和解释模型方面的突出优势(E超等, 2019),近年来该方法来被广泛运用于人口数据空间化研究(Sinha et al., 2019)。

理论现状

人口空间化过程的尺度效应?

已有的研究表明人口分布具有显着的空间自相关性和尺度依赖性,因此在人口空间化过程中,尤其要注重空间分辨率的选择(王珂靖,2015)。合适的网格大小,既能体现出人口详细分布状况,又能反映人口分布的差异性(李双成和蔡运龙,2005)。



现有研究中的尺度选择仍有<mark>较大主观性,</mark>针对人口密集的城市区域,从<mark>不同尺度上来研究人口分布格局,</mark>探求不同区域的尺度适宜性的研究尤为迫切。

研究内容

如何选取及融合多源数据进行人口空间化?

2

如何确定城市人口空间化的适宜尺度?

3

如何用随机森林回归得到人口分布权重?

4

如何定量分析特征变量的重要性程度?

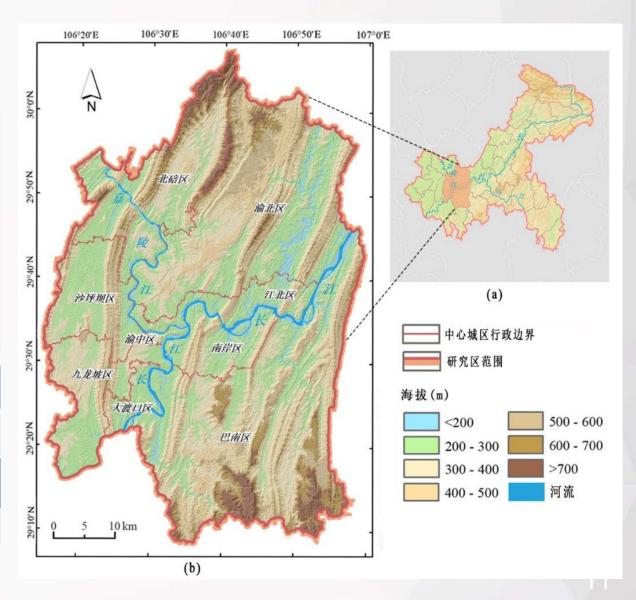
数据与方法

研究区域

为什么选择重庆市主城区?

- 山地城市自然条件复杂,人口分布不均衡的现象较平原城市更加明显,是开展复杂城市人口网格化研究较为适宜区域。
- 2. 该地区日渐成为支撑<mark>经济社会发展</mark>的重要地区。人口 分布的情况受到许多关注。

人口总数	全市占比	地区生产总值	全市占比	城镇化率
875万人	28.21%	8.21×10 ⁷ 万元	40.31%	90.51%
平均海拔	最大高差	土地总面积	人口密度	
390m	1367m	5466.28km ²	1600)	√/km²



研究区数据简介及预处理

类型	格式	年份	预处理方法
13类地图兴趣点	矢量点	2018	核密度分析
住宅用地	矢量面	2018	新建渔网再栅格化
道路网	矢量线	2018	欧式距离分析
夜间灯光	栅格(130m)	2018	几何校正与辐射校正
数字高程模型	栅格(30m)	2010	坡度分析与阴影计算
人口统计	表格	2018	计算人口密度
行政区划边界	矢量面	2018	面链接到表格

地图兴趣点数据

地图兴趣点数据(Points of interest, POI) 通常是指存在于电子地图中有地理坐标的矢量 点数据集(李泽宇和董春, 2019)。

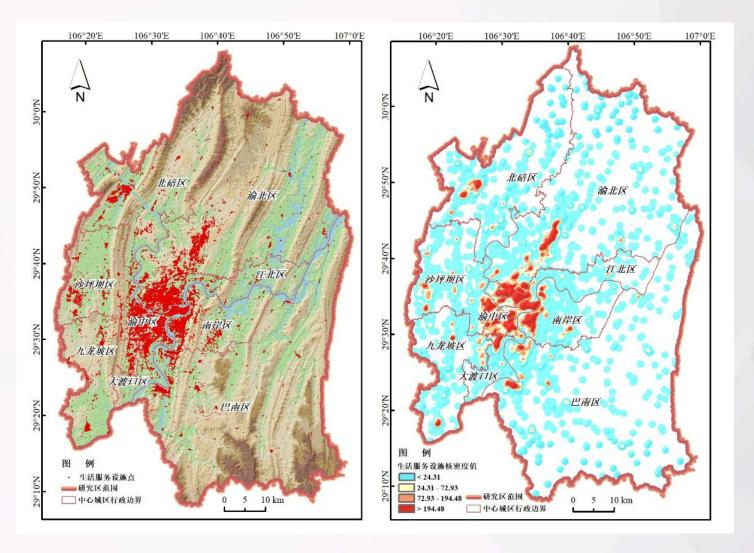
已有的研究表明:对于较小的研究区域而言,该数据能够提供更加<mark>丰富的语义信息</mark>,在人口密集的城市地区<mark>提高</mark>了人口<mark>估算精度</mark>(Langford, 2013)。

百分比 26.96% 23.53% 16.34%
23.53%
16.34%
9.40%
3.73%
3.51%
3.31%
3.21%
2.60%
2.45%
2.22%
1.71%
1.03%
100%

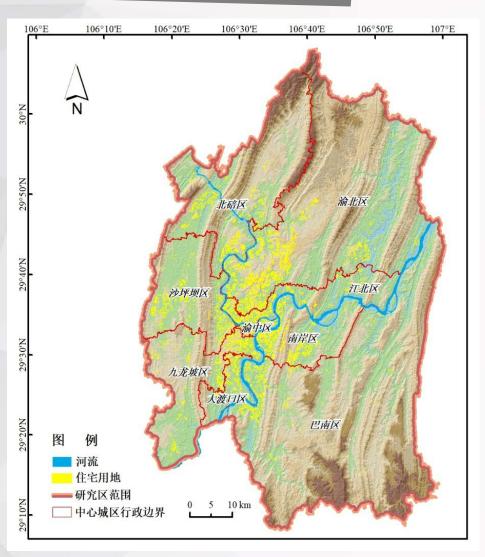
本研究的POI数据采集于2018年百度地图公司

P0I核密度分析

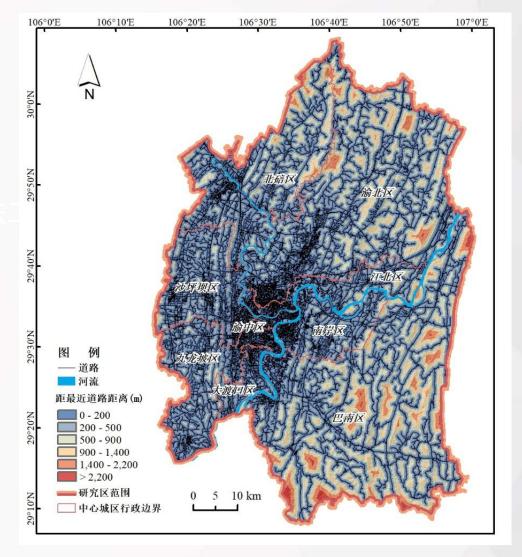
核密度优点在于引入了核函数, 将分布密度随着距离增加而衰减的 问题考虑其中,更加符合客观世界 中的物质分布状态。



生活服务设施点分布及核密度分析图



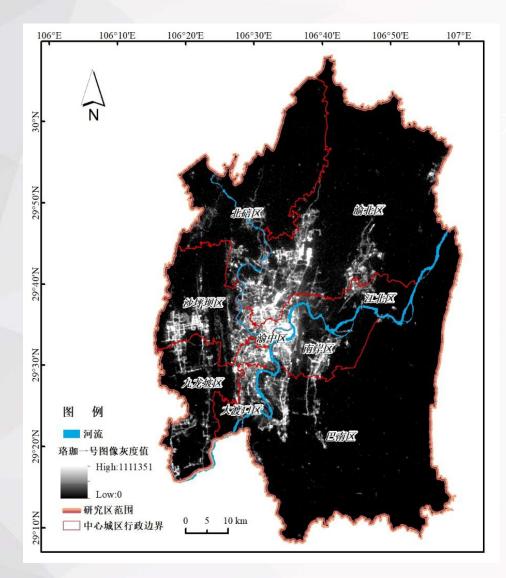
居住用地分布图



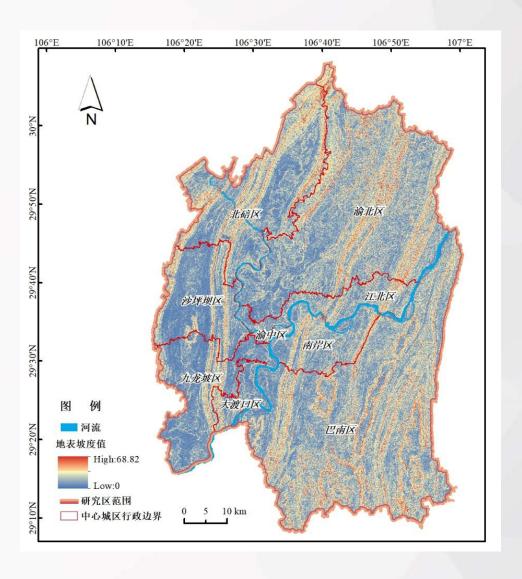
道路及其最短距离分 析 冬

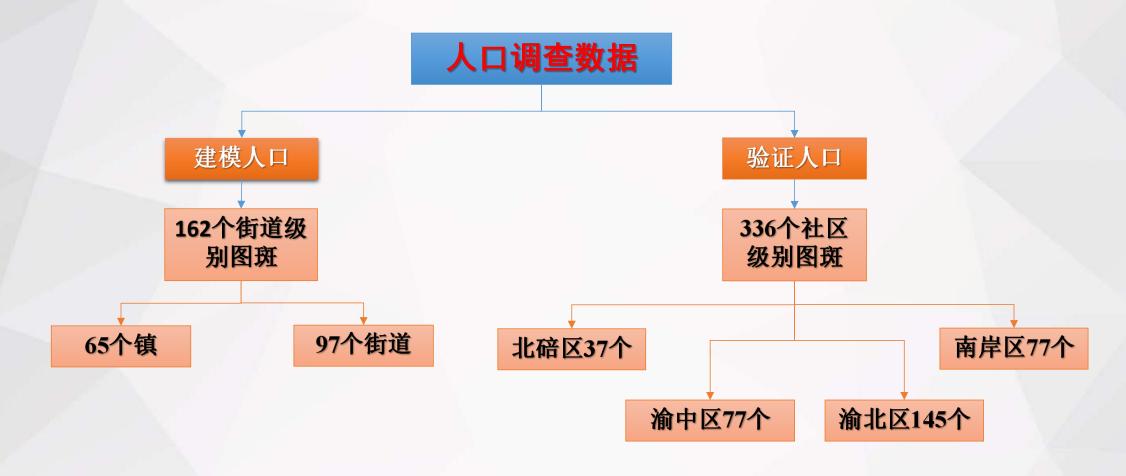
2.2

多源数据



地表坡度图

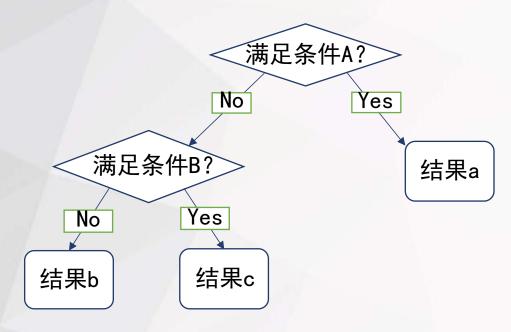




数据来自重庆市公安局和重庆市规划设计研究院

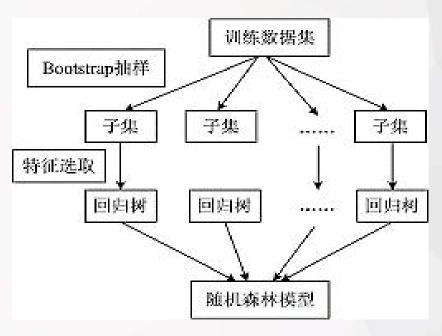
2.3

研究方法



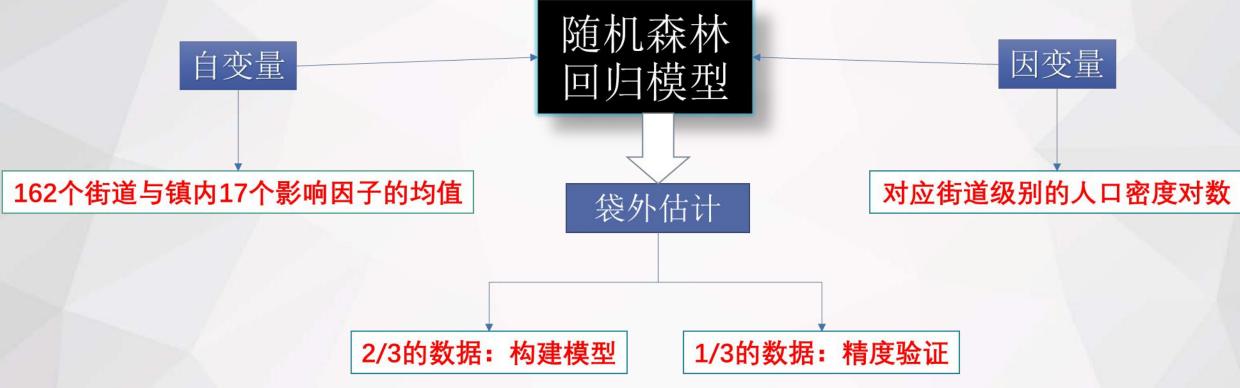
基础决策树

该方法通过询问一系列的**判断问题**来做 出决定,是一种通过设定判断条件将**数据集细分** 为更小的数据子集来**预测目标值**的方法。



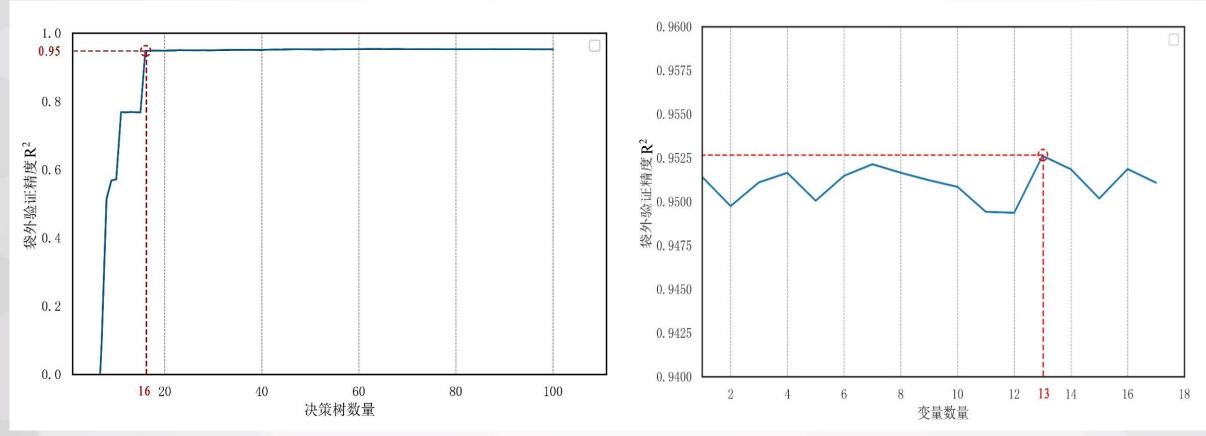
随机森林回归

该方法基于集成的回归决策树,通过计算随机产生的众多的**决策树的平均值**作为结果,是一种可对模型进行训练和预测的**机器学习方法**。



本研究的建模编程语言采用Python3.7.6版本,核心算法来自开源机器学习库scikit-learn库。

建模与结果



以30m格网为例,决策树数量与模型精度关系图

变量数量与模型精度关系图

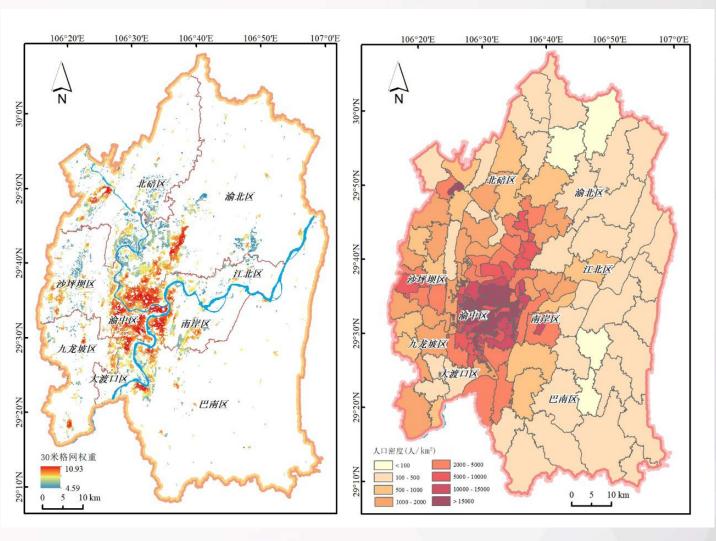
人口空间化原理

街道或者镇的 <mark>总人口数量</mark>

格网在随机森林回归 模型中的<mark>预测权重</mark>

$$POP_{MM} = \frac{POP_{街道总人口} \times W_{MM}}{W_{街道总和}}$$

整个街道或镇的所有 格网的预测<mark>权重之和</mark>

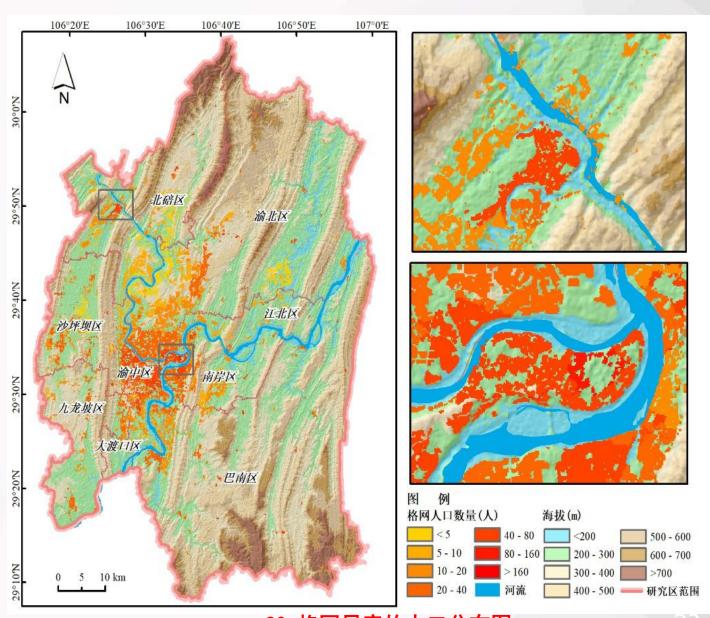


30m格网尺度的人口分布权重图

街道级别的人口密度图

人口空间化结果

- 1. 人口主要集中在山脉之间的<mark>槽谷地带</mark>和 长江和嘉陵江的<mark>沿江地带</mark>;
- 人口密度较高的区域集中在渝中区、渝 北区西南部,沙坪坝区东南部,江北区、 南岸区和北碚区的西部,巴南区西北部, 大渡口区北部;
- 3. <mark>人口密度较低</mark>的区域分布在渝北区东北部、巴南区东南部和北碚区北部地区;
- 4. 人口分布特点与主城区"<mark>多中心、组团</mark> 式"的城市空间结构相吻合。

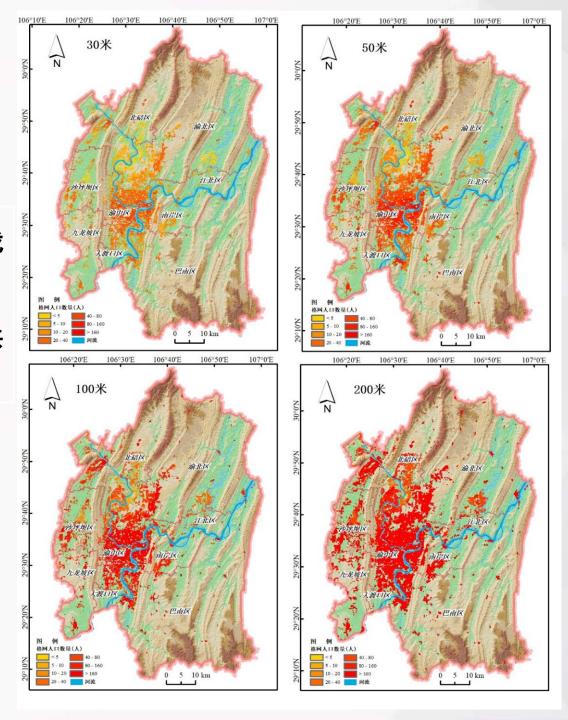


3.4

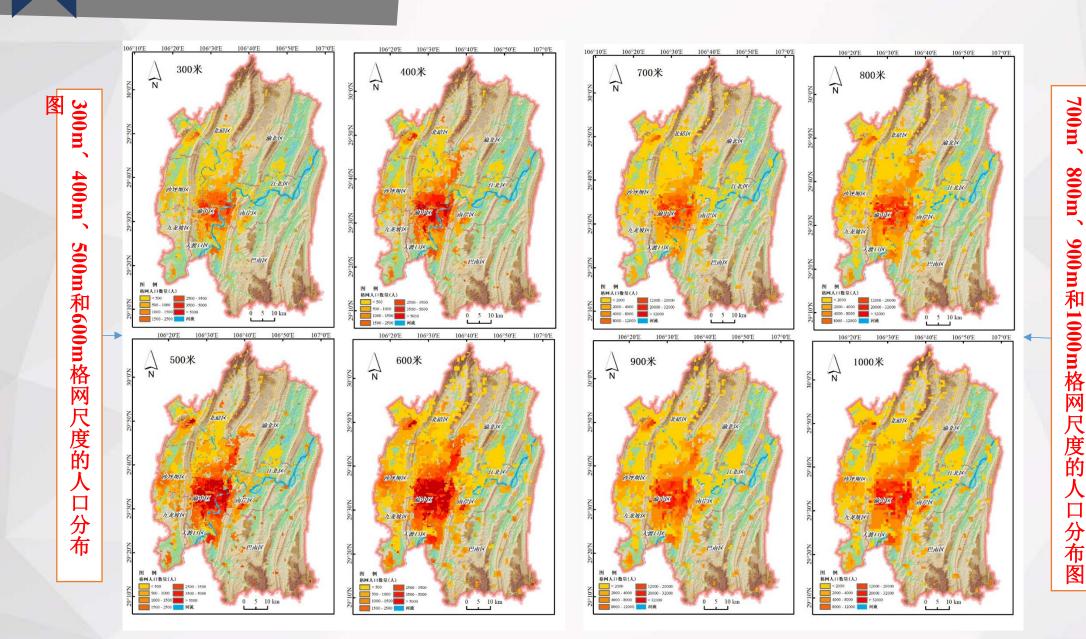
人口多尺度空间化

按照上述的30m人口空间化模型构建方法,我们分别对50m、100m、200m、300m、400m、500m、600m、700m、800m、900m、1000m,共12个格网尺度进行了人口空间化建模。

30m、50m、100m和200m格网尺度的人口分布图



人口多尺度空间化



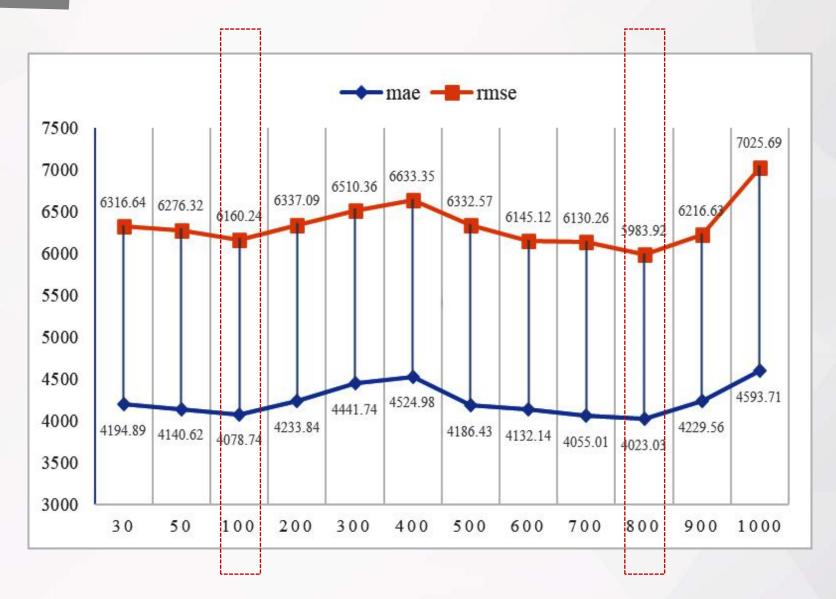
精度评价

平均绝对误差

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (R_i - P_i)^{-2}}$$

均方根误差

$$MAE = \frac{1}{n} \sum |R_i - P_i|$$

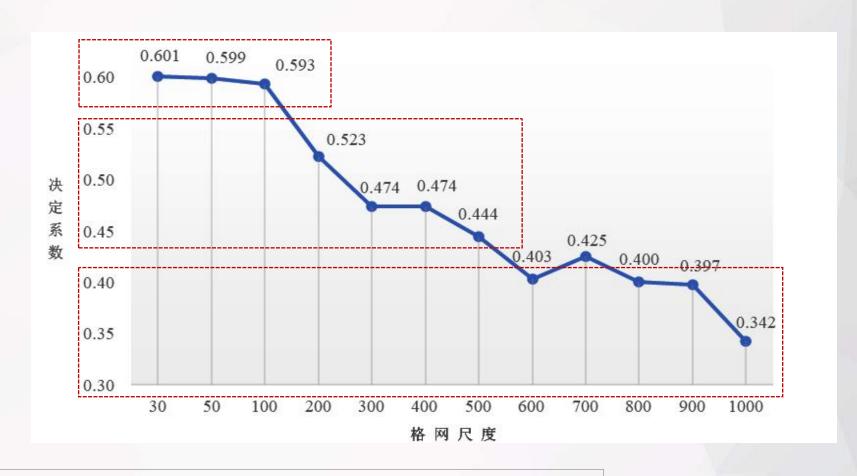


精度评价

决定系数 R²

$$R^{2} = \frac{\sum (\widehat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

R²越大,表示模型的拟合度越好, 可解释程度越高。



取<u>精度误差较小</u>且<u>决定系数较大</u>的格网作为最佳人口空间化建模格网。 本研究100m格网是较为适宜重庆市中心城区人口空间化建模的格网单元。

因子定量分析

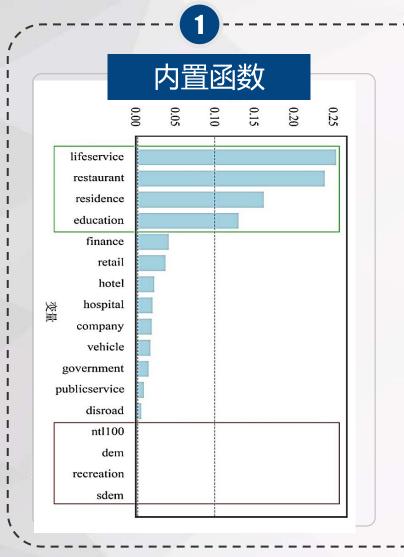
特征重要性分析

为了解释随机森林黑箱模型,特征重要性(Feature importance)分析常被引入,用于定量解释每个变量对于人口分布的重要程度,该方法可对高精度的人口空间化模型的变量选择提供借鉴(Robinson *et al.*, 2017)。

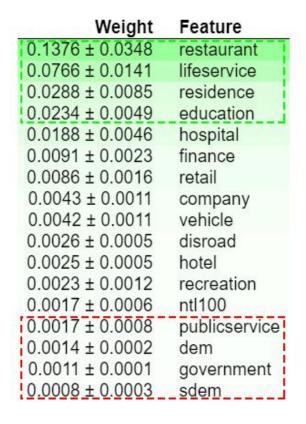
- (1) 随机森林内置函数计算的模型重要性程度;
- (2) 采用换位方式计算得到的模型重要性程度;
- (3) 基于SHAP (SHapley Additive exPlanation)模型的重要性程度。

4.1

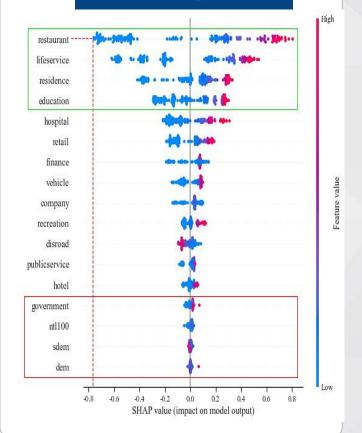
特征重要性分析



换位方式



SHAP模型



部分依赖图分析

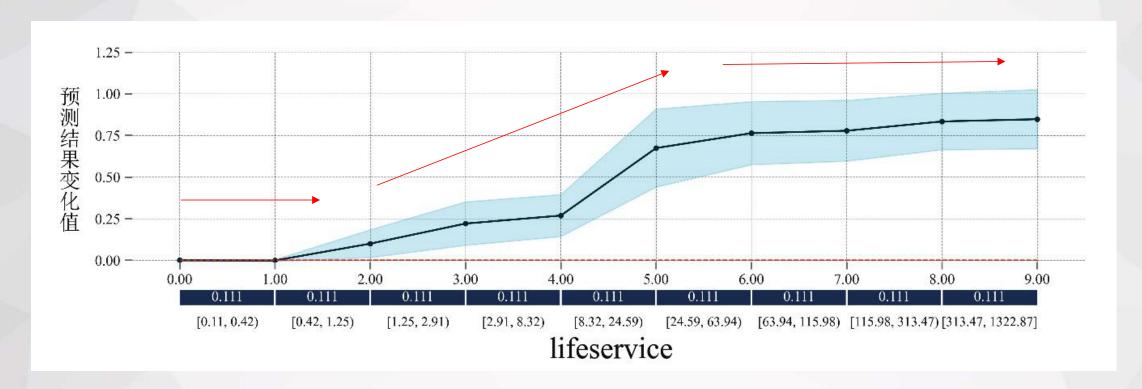
部分依赖图(Partial Dependence Plot, PDP)显示了特征变量在机器学习过程中对于预测结果的边际影响(Friedman, 2001)。

$$\hat{f}_{xS}(xS) = E_{xC}[\hat{f}(xS, xC)] = \int \hat{f}(xS, xC)dP(xC)$$

 $\frac{\mathsf{特征向量xS}$ 和xC组成整个向量空间x。xS代表了偏相关图中被呈现变量,xC代表了其他在机器学习模型 \hat{f} 中用到的变量。

<u>部分依赖图的计算机制</u>: 在**集合C**的特征分布上**边缘化**机器学习模型输出,以便该让<mark>函数显</mark> 示我们感兴趣的**集合S**中的特征与预测结果之间的关系。

部分依赖图分析



- 横坐标表示生活服务设施的取值范围,带有0.111的深蓝色底的9个矩形对应这9等份数据;
- <u>纵坐标</u>为预测结果的<u>变化值</u>,即偏相关函数计算结果;
- 深蓝色的曲线为变化曲线图,在其周围的浅蓝色的区域为变化值可能波动的范围。

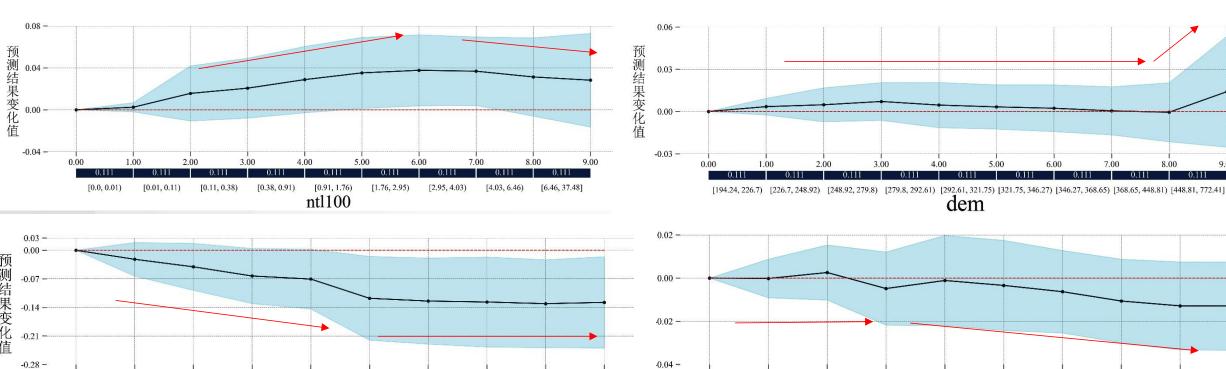
-0.28 -

部分依赖图分析

3.00

4.00

disroad



7.00

[43.68, 77.67] [77.67, 106.02] [106.02, 156.78] [156.78, 189.27] [189.27, 285.55] [285.55, 430.15] [430.15, 1025.48]

1.00

[4.79, 5.84)

[2.77, 4.79)

2.00

[5.84, 6.47)

9.00

6.00

6.00

[8.12, 8.95)

5.00

(6.99, 8.12) sdem

[6.47, 6.99)

7.00

7.00

[8.95, 9.64)

8.00

[9.64, 11.17) [11.17, 14.97]

9.00

5.1

四点结论

(1) 多源数据的选取融合

通过对**13个多源数据**进行**栅格化 和重采样**处理,加入到随机森林回归模型中,以此融合多源数据对人口普查数据进行降尺度。

起主要影响作用的为生活设施、餐饮设施、居住点和教育设施点核密度,而自然地理因素高程和坡度、道路距离及夜间灯光亮度值对于人口分布结果影响较小。

(3) 特征重要性分析

(2) 人口分布的适宜尺度

通过对比**12个空间分辨率**, 100m格网下精度误差较小且拟合精度较高(R²=0.59, p <0.01), 本研究发现重庆市主城区的**适直网格**是100m。

POI核密度对人口分布起**正向**影响, 而高程、坡度因子与道路距离与人口分 布呈现**负相关**关系。夜间灯光主要为正 向影响,也有小部分有出现负向的趋势。

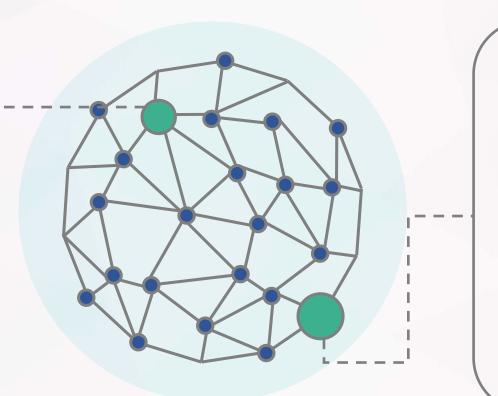
(4) 部分依赖图分析

未来展望

(2) 人口数据建模的方法对比与推广

(1) 人口数据的时空动态建模

由于人口及建模因子数据 源的限制,本文主要使用 2018年的人口调查数据, 因此该方法主要适用于 态人口分布。借助于于 高时空分辨率的多源地理 位置大数据,人口数据的 时空动态建模 有望取得 突破性进展。



基于随机森林算法的城市人口多尺度空间化研究

汇报人:周云 指导老师:马明国教授

报告完毕敬请指教

