

A newly developed approach to estimate aboveground autotrophic respiration in global forest ecosystems

唐晓鹿 研究员 Ixtt2010@163.com 成都理工大学

Table of Content

- 1 Background
- **2 Objectives**
- 3 Methodology
- 4 Results
- 5 Conclusion

Respiration is the largest outflux from terrestrial ecosystem to the atmosphere

Terrestrial ecosystem release carbon to the atmosphere through respiration:

□ Plant respiration: 50 Pg C yr¹ (1 Pg = 10¹⁵ g)

□ Soil respiration: up to 108 Pg C yr⁻¹

Measuring respiration at scales is challenging due to large spatial and temporal variabilities and complex compositions.

◆ 各有优势

◆ 各有局限性

Measuring respiration at scales is challenging due to large spatial and temporal variabilities and complex compositions.

土壤呼吸

箱式法面积: 0.5 × 0.5 m 自动: 动态箱 人工: 静态箱-气相色谱

<mark>树干流液</mark> 单株 自动

树干呼吸

箱式法面积: 直径10 cm 自动: 动态箱 人工: 静态箱-气相色谱

Respiration can divided into belowground (soil) and aboveground respiration, and soil respiration has been widely studied from site level to global level.

Source: (Tang et al,. 2020) Site level

Carbon allocation from GPP to belowground (soil) and aboveground respiration is still unknown.

Forests contain the largest carbon pool in soil and biomass, but forest is one of the most complex ecosystems, acting as a critical role in global climate mitigation and adaptation.

Proportion of carbon stock in forest carbon pools, 2020

□ The total carbon stock in forests decreased from 668 Gt C in 1990 to 662 Gt C in 2020;

□ Carbon density increased slightly over the same period, from 159 t ha⁻¹ to 163 t ha⁻¹.

Objectives

- Estimating the temporal trend of RA_{soil} and examining its spatial distribution pattern;
- Carbon allocation from GPP to belowground RA (CA_B);
- Developing a new approach to estimate aboveground
 RA_{aboveground} in forest ecosystems.

Data Sources

Global Soil Respiration Database	Updated from CNKI
	Updated in April 2020

 Annua 	RA >=	1 year;
---------------------------	-------	---------

Selecting criteria-

- Start and end years reported or extracted from "years of data";
- Gas infra measurements only;
- Without treatment/management

Data Sources

- Random Forest-based RA Modelling a machine learning method;
- Trend analysis <u>Theil-Sen linear</u> regression and tested with the <u>Mann-kendall non-parametric</u> test;
- All processes conducted in R.

Good model performance

Strong spatial and temporal variabilities

Increase in RA_{soil}

 $RA_{soil}: 8.9 \pm 0.08 Pg C yr^{1}.$ Increasing trend of 0.006 Pg C yr². **RA**_{soil} increase: 0.18 Pg C yr¹ \rightarrow 1 °C increase in MAT 0.03 Pg C per year yr¹ \rightarrow 10 mm increase in precipitation.

Decrease in CA_B

CA_B decreased, varying with GPP products Mean CA_B: 0.243

Development of RA_{aboveground}

	$RA = RA_{aboveground} + RA_{soil} = GPP - NPP$
	$RA_{aboveground} = GPP - NPP - RA_{soil}$
	$NPP = GPP \times CUE$
3)	$RA_{soil} = GPP \times CA_{B}$
	$RA_{aboveground} = GPP \times (1 - CUE - CA_B)$

CUE ≈ 0.5

Spatial and temporal patterns of RA_{aboveground}

Strong spatial and temporal patterns

Mean RA_{aboveground}: 11.5 Pg C yr⁻¹ No significant trend (p = 0.06)

- Global forest RA_{soil} and CA_B, RA_{aboveground} products at 0.5° 1982 to 2017 were developed;
- Annual mean RA: <u>8.9 Pg C yr⁻¹</u>, increasing by <u>0.006 Pg C yr⁻²</u>;
- Mean CA_B: 0.243 with a decreasing trend;
- A new approach to estimate RA_{aboveground} was developed;
- Mean RA_{aboveground} : 11.5 Pg C yr¹, no significant temporal trend.

谢谢,敬请批评指正!

欢迎各位莅临成都理工大学指导!

T