Important Response and Feedback of Asian Terrestrial Ecosystems Carbon Cycle to Global Warming

梁乃申 (Naishen Liang) 日本国立環境研究所

²Yiping Zhang, ³Po-Neng Chiang, ⁴Derrick Y.F. Lai, ¹Munemasa Teramoto, ⁵Kentaro Takagi, ^{6, 13}Toshiaki Kondo, ⁷Jun Koarashi, ³Yanan Wang, ⁸Shenggong Li, ⁹Jingyun Fang, ⁹Shilong Piao, ¹⁰Masahiro Takagi, ¹¹Sachinobu Ishida, ⁵Takashi Hirano, ¹Jiye Zeng, ¹Yoshiyuki Takahashi, ⁷Mariko Ando, ¹²Samsudin Musa

² XTBG, CAS; /// ⁵ Hokkaido Uni.; // ⁷ Japan Atomic Energy Agency ///

Global Soil Organic Carbon (SOC) Stock

Global SOC pools (0-100cm) = 1550 Gt C (Batjes 2014, EJSS) Doubled the atmospheric carbon Trebled the global vegetation biomass

Soil CO_2 efflux (µmol m⁻² s⁻¹)

梁乃申

Global Soil Respiration

Raich & Potter 1995 (GBC)

 $Rs = 1.250 \times e^{0.05452 \times Ta} \times (W/(4.259 + W))$

*T*a = monthly mean air temperature (°C),

W=monthly mean precipitation (cm)

Global Soil Respiration = 80 Gt C y⁻¹

Potter & Klooster 1998 (GBC); IPCC2001-2007

CASA model

Global Heterotrophic Re = 57 Gt C y^{-1}

9 times of fossil fuel emission (6.4 GtC y⁻¹)

57 times of land sink (1.0 GtC y-1)

>Important role of soil respiration in global carbon cycle

Figure 2 | **Estimated annual global** R_s . The dashed line indicates results outside the time period covered by main data set, S1 (1989–2008), but within the period covered by the entire R_s database, S0 (1961–2008), and should be considered speculative. The grey region shows the standard deviation of the Monte Carlo simulations (N = 1,000). Nature, 464: 579-582 (25 March 2010)

Feedback of SOC Decomposition to Global Warming (IPCC AR4, AR5)

Global Soil respiration in Last 3 Decades

But not soil carbon?

Asian Terrestrial Ecosystems

Boreal

Cool-temperate

hemperate

Subtropical You know Asia

You understand the World

Tropical

Open Questions

With global warming, will Asian (monsoon) terrestrial ecosystems continuous be carbon sink?

> or potentially convert to carbon source?

Alaska (boreal)

23m (lowland)

Malaysia^ (tropical)

Liangber Network

4200m (permafrost)

the second states and the second states

Partitioning Forest Understory Carbon Budget Heterotrophic respiration $(R_{\rm h})$ Soil efflux + **Soil efflux Photosynthesis** (R_s)

Multichannel gas sampler

From CO₂ only to CO₂/CH₄ and to $^{13}C/^{18}O$

Stable isotope ¹³C/¹⁸O

马来通虹Pasoh 热带雨林

Soil temperature response of soil CO₂ flux in Asia monsoon forests

The influence of soil temperature is relatively strong

The influence of soil moisture is relatively weak

Impacts of climate change on carbon cycle

Effect of Land-use Change on Soil CO₂ Efflux

Primary forest

Rubber

Secondary forest

Oil palm

Effect of Land-use Change on Soil CO₂ Efflux

Primary forest: 33.1 tC ha⁻¹ y⁻¹ (100%)
Secondary forest: 19.9 tC ha⁻¹ y⁻¹ (60%)
4-12 year old oil palm: 19.9 tC ha⁻¹ y⁻¹ (60%)
4-12 year old rubber: 17.4 tC ha⁻¹ y⁻¹ (53%)

Deforestation or land-use change caused soil degradation in tropics.

Dramatical climate change occurs in Southeast Asia.

Soil to Ecosystem CH₄ flux

Mt. Fuji (larch forest)

Tibet Plateau Wetland

Ultra-Portable Gas A

Soil CH₄ Flux of Japaneses Larch Forest (Mt. Fuji)

Month of 2015

Seasonal soil CO₂/CH₄ flux at Pasoh Tropical Forest

Soil Warming Experiment Network **Beech forest Deciduous** oak forest **Mixed** forest Alpine forest **Pine forest** Taiwan HK Evergreen oak forest Subtropical forest Subtropical forest Tropical forest

Experiment Designing

5 heterotrophic plots

5 warming plots

10 trench plots

Large Warming Effect on Asia Monsoon Forest Soil Decomposition

SCIENTIFIC REPORTS

Tellus

Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland

By MARICAR AGUILOS¹, KENTARO TAKAGI²*, NAISHEN LIANG³, YOKO WATANABE², MUNEMASA TERAMOTO³, SEJJIRO GOTO³, OSHIVIKI TAKAHASHI³ HITOSHI MUKAI³ and KAICHIBO SASA²

Northern Hokkaido

Drought peatland Hight SOC stock Low temperature (5.5°C)

OPEN Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest

Received: 04 August 2015 Chuansheng Wu^{1,2,3}, Naishen Liang⁴, Liqing Sha^{1,2}, Xingliang Xu⁵, Yiping Zhang^{1,2}, Huazheng Lu^{1,3}, Liang Song¹, Qinghai Song³ & Youneng Xie⁴ Published: 27 Ehwany 2016

As heterotophic respiration (R_a) has great potential to increase atmospheric CO₂ concentrations, it is important to understand warming effects on R_a (res to better prediction of catoon-climate feedbacks. However, it remains unclear how R_a responds to warming in subtropical forests. Here, we carried out trenching alone and trenching with warming treatments to test the climate warming effect on R_a in a subtropical forest in southwestern China. During the measurement period, warming increased annual soil temperature by 2.1 °C, and increased annual amen R_a by 2.29 ^(N) warming increased annual soil temperature by 2.1 °C, and increased annual man R_a, by 2.29 ^(N) warming since soil temperature of the south southwestern China. During the measurement period, warming increased annual and the southwestern China. Buring the measurement period, warming since soil temperature on the southwestern China. Buring the measurement period warming the constraint and the southwestern China. Buring the measurement period warming the constraint and the southwestern China. Buring the measurement period warming the southwestern and the southwest

@AGUPUBLICATIONS

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

Key Points: • Five consecutive years of stimulatory warming effect on heterotrophic respiration (R₀) was confirmed in a cool-temperate deciduous forest • The observed mean annual warming effect (109% °C⁻¹) was close to the Long-Term Stimulatory Warming Effect on Soil Heterotrophic Respiration in a Cool-Temperate Broad-Leaved Deciduous Forest in Northern Japan

Munemasa Teramoto¹ 💿, Naishen Liang¹, Sachinobu Ishida² 💿, and Jiye Zeng¹ 💿

¹Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan, ²Graduate Sch of Science and Technology, Hirosaki University, Hirosaki, Japan

Cold-temperate climate High SOC stock Humid soil (>2400mm)

Subtropical mountain High SOC stock Easy decomposition

Large Warming Effect on Asia Monsoon Forest Soil Decomposition

Long-term & high warming effect may have strong feedback on global warming

Difference in microbial biomass

Amount of microbes

There were no significant differences in the amount of microbes between control and warming Ch in any region.

Thus, warming effect on the amount of microbe is limited.

Species composition

Although significant increase of specific microbial groups was observed in secondary forests and planted forest, the increase ratio is relatively small.

Such increase was not observed in primary forests with high diversity keeping from human disturbances.

It was concluded that the low levels of deceleration of Rh observed in Asian forests were originated from stability of microbial community against global warming brought by the high levels of biodiversity !!

Soil ¹⁴C Measurement Protocol

Soil Δ^{14} C sampling

SOC decomposition under warming environment

1cm soil profiles

From Soil to Graphite

Graphite

Vacuum line

00

Two Accelerator Mass Spectrometers (AMS) in NIES

Compact Accelerator Mass Spectrometer (CAMS)

POC & ¹⁴C Profiles in Top 20cm Soil

NIES Adaptation Program (2018~2020)

PJ1-6: アジア域の陸域生態系劣化に及ぼす温暖化影響とそのメカニズム解明

Establishing Pasoh Facilities as an Observational Base for Studies on Tropical Forest Ecosystems (2012~)

Holding the steering committee meeting for strengthening NIES-FRIM-UPM MoU

SVOC

International symposium & field campa (knowledge exchange & capacity building)

Mission:

To bring together the NIES and Malaysian leading scientists for understanding climate-related carbon cycle and biodiversity of tropical forests by strengthening Pasoh facilities as an overseas observational base.

Emission of

methy halides

from tropical

forest

forest carbon cycl

Pasoh facility setup & maintenance

Preliminary study on regeneration & decomposition related biodiversity.

fect of high CO₂ on **CO**2 on

梁乃申

Conclusions

- 1. High-diversities in ecosystems
- 2. Global significance
- **3. Variations of climates**
- 4. Extreme climate events
- 5. Network research