In-stu observation of soil CO2 flux and its isotopic ratio from cropland in the North China Plain

Fadong Li, Kun Du, Peifang Leng, Zhao Li

National Field Scientific Research Station of Agro-ecosystem in Yucheng, Shandong, Ministry of Science and Technology Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences University of Chinese Academy of Sciences 7/25/2019 @Hailaer, China

Outline

Background

Methods

2

Results & Conclusions

Outlook

Part 1

BACKGROUND

Background

Long term farmland ecosystem management changes carbon dynamics --fixation and emission

Complexity of C transformation

Carbon transformation pathways in soil

 How transformation pathways affect soil carbon cycle?
 What is the proportion of root respiration and soil organic decompose in soil carbon flux

Five main biogenic sources of CO₂ efflux from soil

(Trumbore et al. 2008 Science; Kuzyakov, et al. 2010 GCB; Peterson&Fry, 1987 ARES)

Online, real-time measurements of photosynthetic carbon isotope discrimination allow rapid determination of mesophyll conductance to CO2

- To verify the feasibility of this experiment method.
- To in-situ monitor variations in the CO₂ flux and isotopic composition from cropland soil under alteration of managements.
- What are the factors controlling the δ 13C and δ 18O of respiration

Part 2

METHODS

Study area

Yucheng comprehensive experiment station

- Salinized brown soil
- Warm and semi-humid continental monsoon zone

- (36° 40′~37° 12′ N, 116° 22 ′~116° 45′E)
- P=580mm, E_{pan}>950mm
- \circ T_{ave}=13°C
- Agro-ecosystem: Wheat-maize rotation system

Treatments& chambers

Experiment last for 5 years (from 2014, 3 replicate) Automatic chambers and measuring devices were installed from last May

Treatments numbers	Straw return yes/no	Fertilizer levels	Tillage yes/no	Chambers No,
1	Yes	High 280 kg N ha ⁻¹	No	1#, 2#
3	Yes	Middle 210 kg N ha ⁻¹	Yes	3#, 4#
5	Yes	High 280kg N ha ⁻¹	Yes	5#, 6#
7	No	Middle 210kg N ha ⁻¹	No	7#, 8#
9	No	High 280kg/N ha ⁻¹	Yes	9#, 10#
10	Yes	Middle 210kg/N ha ⁻¹	No	11#, 12#
13	No	High 280 kg N ha ⁻¹	No	13#, 14#
16	No	Middle 210kg N ha ⁻¹	Yes	15#, 16#

16 Chambers and environment parameters

- No crops in chambers
- 5cm stainless edge were embeded into soil
- $50*50*50 \text{ cm}^3$
- T/RH, HMP155
- Pressure, CS100
- Soil temperature at 0cm
- Soil moisture and salinity, by CS655 at 5cm
- Datalogger for sensors, CR1000

Air sampling procedure

1. Monitor time of months: Winter-Wheat growth period

- From November 2018 to June 2019
- from sowing, over-wintering, turn-green, jointing, booting, heading, grouting, maturity

- Every hour from 0 to 24 O'clock
- Chamber is closed for 200s one by one for air intake.

TDLAS Principle (TGA200A, Campbell Scientific, USA)

Laser absorption wavelength

conversion to the total CO₂

$$[C_T] = \frac{[C_{12} + C_{13} + O_{18}]}{1 - f_{other}}$$

- C_T is total CO₂ concentration (ppm)
- C₁₂, C₁₃, O₁₈ is ¹²C, ¹³C, ¹⁸O concentration (ppm), respectively
- *f_{other}* is natural abundances of other proton except
 ¹²C, ¹³C, ¹⁸O in CO₂, ¹⁸O is zero when only δ-¹³C is calculated
 Campbell Scientific Inc. 2014

Calculating methods

1. CO_2 flux

$$F = k_1 \times \frac{273}{273 + T} \times \frac{M}{V} \times H \times \frac{dc}{dt}$$

- K is a conversion coefficient (1 for CO₂)
- Ta (°C) is the air temperature within chamber
- M is the molecular weight (44 CO_2/mol)
- V is the mole volume (22.4 L/mol)
- H (m) is the chamber headspace height
- dc/dt (μ L/(L·hr)) is the change in concentration of CO₂

- 1. Sampling time for every chamber is 200s
- 2. After 50s, CO_2 concentration is increased obviously and the R² for regression equation(from 51s to 200s) is higher than 0.95

Kutzbach et al. (2007)

Calculating methods

2. ¹³C and ¹⁸O ratio

calibration equation, aim to remove concentration dependence and time dependence

$$X_{s,T}^{L} = \frac{X_{2,T}^{L} - X_{1,T}^{L}}{X_{2,M}^{L} - X_{1,M}^{L}} \left(X_{s,M}^{L} - X_{1,M}^{L} \right) + X_{1,T}^{L}$$
$$X_{s,T}^{H} = \frac{X_{2,T}^{H} - X_{1,T}^{H}}{X_{2,M}^{H} - X_{1,M}^{H}} \left(X_{s,M}^{H} - X_{1,M}^{H} \right) + X_{1,M}^{H}$$

- Superscript L and H are for light and heavy protons, respectively.
- Subscript 1, 2 and a indicate standard gas 1, 2 and sampling air, respectively.
- Subscript T and M indicate the true and the measured concentration, respectively.

Calculating methods

2. ¹³C and ¹⁸O ratio

• R_{VPDB} (¹³C) = 0.0111797, R_{VPDB} (¹⁸O) = 0.002088349077

Griffis et al., 2004

Calibration methods

¹³C and ¹⁸O calibration

1. Two concentrations standard gases(about 300ppm,600ppm CO2) make calibration and one standard gas (about 400 ppm) CO2 to keep quality control.

2. Every day, every standard gas will be monitored for 15min one by one from 23 to 24 O'clock.

Part 3

RESULT & CONCLUSIONS

Environment factors in chambers

- Data for 24/6/2018
- Temperature, relative humidity and pressure were time-varying in chambers

Intake time verification in same length pipeline

- CO_2 , ¹³C, ¹⁸O concentrations were stable after 50s
- Intake time and linear time were 200s, 50-200s, respective

CO₂ flux of four chambers in 6/13/2018

Each chamber was closed one by one and then ¹³C, ¹⁸O (ppm) (measured, no calibration) were determined for 200s in an hour in 7/19/2018

Chambers No.	Tillage yes/no	Fertilizer levels	Straw return yes/no
C-9	Yes	High 280 kg N ha ⁻¹	No
C-15	Yes	High 280kg/N ha ⁻¹	No
C-13	No	Middle 210kg N ha ⁻¹	No
C-7	No	Middle 210kg N ha ⁻¹	No

Treatments of four chambers

Sum of CO_2 flux of each four chambers in two hours

- Difference between treatments was significant
- CO2 flux in of straw return were higher than nostraw return
- CO2 flux were higher under tillage than no-tillage

CO₂ flux under rainfall in 7/13/2018

Rainfall, temperature and solar radiation intensity

Chambers No.	Straw return yes/no	Tillage yes/no	Fertilizer levels
C-3	Yes	Yes	Middle 210 kg N ha ⁻¹
C-11	Yes	No	Middle 210kg/N ha ⁻¹
C-15	No	Yes	Middle 210kg N ha ⁻¹
C-7	No	No	Middle 210kg N ha ⁻¹

Treatments of chambers

CO₂ flux under rainfall

- Flux was restrained by too heavy rainfall
- After the rain, CO₂ flux was increased during certain time
- Difference between treatments was significant

CO2 flux of four treatments in different wheat growth periods

CO2 flux of four treatments in different wheat growth periods in 2019

Chambers No.	Straw return yes/no	Fertilizer levels	Tillage yes/no	Root removel
C-3	Yes	Middle 210 kg N ha ⁻¹	Yes	No
C-11	Yes	Middle 210kg/N ha ⁻¹	No	No
C-15	No	Middle 210kg N ha ⁻¹	Yes	No
C-7	No	Middle 210kg N ha ⁻¹	No	No

Treatments of four chambers

- Difference of flux in different wheat growth periods in single treatment was significant
- Effect of higher N fertilizer and tillage treatments on soil flux were more obvious than middle N fertilizer and no-tillage treatments.

¹³C, ¹⁸O concentrations in different chambers in an hour(7/13/2018)

Calibrated data of δ^{13} C, δ^{18} O for all champers at 0 O'clock (A) and 9 O'clock(B)

- Data of δ^{13} C, δ^{18} O for all treatments were obviously changed after champers closed.
- δ¹³C, δ¹⁸O of CO2 in night(from -20‰ to -18‰, from -20‰ to -5‰) were different with that in daytime (from -23‰ to -27‰, from -5‰ to 0).

- TDLAS is stable and has high precision.
- Short intake time and linear time is appropriate.
- Effects of different treatments on soil CO2 flux are different, and soil flux is obviously changed under various weathers.
- Depletion of carbon isotopes in atmospheric CO₂ was significant, and this methods could be used for C source separation.

Part 4

OUTLOOK

- Long-term monitoring for CO₂ flux and isotopic ratio.
- Understanding the mechanisms of carbon cycles in cropland soil.
- Higher precision and lower maintenance

acknowledgement

- Prof. Guanghui Lin at Tsinghua University
- NSFC
- CAS

Thanks for your attention!

12 11 Mar Muddee

建算机器温度的 ~