

The Impacts of Urbanization-associated Land Conversions on Ecohydrological and Meteorological

Processes in the Lower Yangtze River Delta Region

Lu Hao and Xiaolin Huang (Nanjing University of Information Science and Technology, CHINA) Ge Sun and Yongqiang Liu (USDA Forest Service, Southern Research Station, USA)

Motivations

* Rapid urbanization alters terrestrial ecosystem structure and functioning permanently and inevitably leading to profound impacts on the water and energy balances.

* Results in or aggravates climatic and environmental consequences by influencing surface evapotranspiration (ET), i.e., five urban islands: Heat Island, Dry Island, Wet Island, Rain Island, and Turbid Island.

- ET plays an important role in driving local weather patterns, affecting turbulence, cloud formation, and convection.
- Converting wetlands with high ET to urban uses leads to a sharp decrease in ET in humid regions. The role of ET in affecting local hydrology and climate is especially pronounced in humid regions.
- Questions Asked
 - Could climate warming and climate variability explain the observed climatic and environmental

0 75 150 KM consequences? 120°E 117°E 120°E 1**17°E** How urbanization-associated land conversions affects hydrometeorological processes? Hao & Sun et al., WRR, 2018 Atmospheric Humidity Change Not Explained by Change **Conceptual Model and Study areas Regional Scale: Yangtze** Basin Scale: Qinhuai in Air T in the Urban Core **River Basin River Delta** angtze River Delta Land Use / Cover Change in wet region (Converting rice paddies to urban use) 28.622.622.62

地表温度 (LST)

土壤热通量 (G)

Hot Pixel

 $H_{hot} = Rn - G$

 $dT_{hot} = H_{hot} \times \frac{r_{ah,hot}}{\rho_{hot} C_p}$

高程 空气温度

200 米处风速 (u₂₀₀)

摩擦风速 (u)

空气动力学阻抗 (гտ)

- RH vs T 0.43 -0.30 Decrease 0 75 150 KM 0 75 150 KM 117°E 117°E 120°E 120°E
- >Southern region dominated by forest covers
 - > RH decreased significantly when T increased significantly: negative correlation
 - > Air T was the potential dominant factor for the reduction of atmospheric humidity.
- > RH decreased significantly while air T had no significant change: Positive relationships
- > Air T was not the dominant factor for the reduction of RH in this region.

- Nonparametric Mann-Kendall test to detect the parameter trends
- Sensitivity Coefficient' to compare the sensitivity of PET to changes in climatic variables.
- The Surface Energy Algorithm for Land (SEBAL) model was parameterized and validated using multiple field data sources including eddy covariance flux and lysimeter measurments and streamflow monitoring.
- Improved SWAT incorporating new algorithms for modelling hydrological processes of rice paddies.
- EC in Paddy rice field (Lishui, Nanjing) and Weighing lysimeter (NUIST, Nanjing)

反照率(¤)

净辐射通量 (Rn)

Cold Pixel

 $H_{cold} = Rn - G - LE_{cold}$

 $dT_{cold} = H_{cold} \times \frac{r_{ah,cold}}{\rho_{cold} C_p}$

归──化植被指数 (NDVI)

 $a = \frac{dT_{hoc}}{T_{s,hoc} - T_{s,cold}}$

 $b = -\frac{dT_{hot} T_{s,cold}}{T_{s,hot} - T_{s,cold}}$

Surface Water Balance Change in QRB

Results

 Enhanced Urban Dry Island Explained by the Decreases in LAI and ET

>The decrease of RH is not surprising when the climate is warming up in theory.

>However, it appears the sharper decrease in RH in the urban core when compared with rural areas was related to the decrease ET, thus the ecohydrological processes.

>We argued that the ET reduction reduced water vapor during urbanization.

Proposed Urban Dry Island (UDI) to characterize urbanization effects on reducing atmospheric humidity and elevating vapor pressure deficit (VPD).

Conclusions

- In addition to global warming and localized UHI, UDI is closely related to the loss of vegetation cover (i.e., natural wetlands and paddies).
- Reduction of ET or latent heat is another important factor contributing to UDI effects.
- Urban environmental change (UHI, UDI) and storm flow related to change in ET.
- Urban Heat Island and UDI effects are coupled and should be collectively addressed in urban planning and climate change assessment.

Email: hl_haolu@163.com