LIDAR TECHNOLOGY AND
APPLICATIONS IN FORESTRY



LiDAR
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Remote sensing technique that creates 3D Salle.

models from reality: %,:2‘{_’ -
s e roLL

o Active sensor capable of generating .
up to 400.000 laser impulses per e
second

o At the same time, the sensor detects
the reflections (returns), which bounce
off the surface to the sensor

= ALS and TLS

1 Based on impulse-reflection timing,
GPS, and a Gyroscope, the reflecting
surface is located in space (x,y,x)



LiDAR
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LiDAR

3D point cloud representing the
portion of the earth surface
scanned

Accurate profile of forested
areads

Point density and number of
returns depend on sensor
frequency and flight condition

In LAS files additional features
for each point are stored (return

number, classification, scan angle,
RGB, etc. )
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Preprocessing




Preprocessing: Ground points
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In ground point iteration user-defined parameters decide if points
belongs to ground or not.



Processing: surface models

Digital models (raster) :
o1 Digital Terrain Model
o1 Digital Surface Model

1 Canopy Height Model

ORTHOPHOTO DTM






LiDAR applications in forestry
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LiDAR applications in forestry

]
S.] s|2 513 s|4 §5
Single tree approach
o Tree segmentation \
A
0 Tree species detection ok

7 Individual tree biophysical
characteristics (DBH, H,
Crown diameter)
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LiDAR applications in forestry

]
sl 5253 s4 s5 ,
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Single tree approach / Area-based approach
Tree segmentation | Use of LiDAR-derived metrics
Tree species detection ._%7 (e.g. percentiles, descriptive

. ] ) statistics, indices, etc.)
Individual tree biophysical
characteristics (DBH, H, Canopy cover
Crown diameter) Calculation of biomass/ha
Forest stand level classifications
(e.g. sp. composition, density)
Diversity indices detection




LiDAR metrics

Examples of LiDAR-derived metrics (descriptive statistics)

high points.

Skewness of all returns A measure for the degree of symmetry in the Point-cloud

density distribution.

Kurtosis of all returns A measure for the degree of peakedness/flatness in the
Point-cloud density distribution.




LiDAR metrics
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LIDAR metrics

Examples LiDAR-derived metrics (indices )

The canopy density is computed as the number of all points
Canopy density index above the cover cutoff divided by the number of all

returns.

The number of first returns above the cover cutoff divided

Canopy cover index
by the number of all first returns.

Proportion of first returns for which there is a second
(either vegetation or ground) return; higher proportion of

Vegetation permeability these dual returns indicates more light energy penetrating
the canopy.




MODELS: BIOPHISICAL PARAMETERS

Models (p<0.005) By B B Bs
In(AGB) = B,+B,In(p95_all)+p,In(p01_first)+f;In(p25_first) 6.3746  1.4907 -0.7169  0.7969
Shannon = B,+f,In(kurtosis_first)+p,In(p01_first)+f;ln(p25_first) 0.85199 0.44057 0.50977 -0.17491
Models (p<0 005) RMSE RMSEcv normRMSE normRMSEcv ade2
AGB 13.5 [Mgh'!] 26.6 [Mgh-1] 0.0925 0.183 0.84

Shannon Index 0.18 0.39 0.12 0.25 0.7



MODEL ACCURACY
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LiDAR: summary

Advantages Limitations

High accuracy in estimation of
biophysical parameters correlated
with structural characteristics of
forest stand

Less expensive compared to field
surveys (only limited field surveys
are needed)

Great potential in combination with
other type of data (e.g. Multi- or
Hyperspectral data)

Low accuracy in estimating
understory vegetation’s biophysical
characteristics

Limited by < 50% veg. cover

Very low biochemical information
about the scanned surface (as
opposed to optical passive sensors)
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