Thrust 2: Sustainability Assessment of the New PV Technology and Production

Jiquan Chen, Defne Apul, Carol A. Stepien
Jenny Collier, Undergraduate Student (Civil Engineering)
Angela Fan, Ph. D Student (Environmental Sciences)
Xizheng Ma, Undergraduate Student (College of Business)
Robert Phillips, Undergraduate Student (Civil Engineering)
PROJECT DESCRIPTION
CURRENT THRUST II FOCUS
Possible Parameters Related to Each Life Cycle Sustainable Assessment Phase

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters related to:</td>
<td>Raw material type</td>
<td>Chemical reaction approach (e.g., inverse micellar vs. thermal injection) Solvent type</td>
<td>Thin-film deposition method Type of material used Material thickness Device efficiency</td>
<td>Required module interconnections, support structure, inverters and transformers, concrete</td>
<td>System lifetimes, maintenance requirements</td>
<td>Disassembly, material recovery processes, materials sent to landfills</td>
</tr>
</tbody>
</table>
CURRENT PROCEDURE

Environmental Sustainability Metrics

- Cell Components
- Material Acquisition
- Manufacturing Process

Mineral Resources
- Location
- Production
- Consumption
- Reserves

Mineral Cost
- Price Volatility
- Domestic
- Import

5/15/2013
FOCUS HIERARCHY

Proposed Compounds
• Copper Zinc Tin Sulfide (CZTS)
• Zinc Phosphide
• Copper (II) Sulfide
• Iron Sulfide
• Copper (II) Oxide
• Copper (I) Oxide
• Nickel Sulfide
• Amorphous Silicon

Raw Material
• Copper
• Zinc
• Tin
• Sulfur
• Selenium
• Phosphorous
• Iron
• Nickel
• Silicon
DOMESTIC ANALYSIS
2012 Production Statistics

![Graph showing production statistics for different materials.](image)
2010 U.S. NET IMPORT RELIANCE FOR SELECTED NONFUEL MINERAL MATERIALS

- Copper
- Zinc
- Tin
- Sulfur
- Selenium
- Phosphorous
- Iron
- Nickel
- Silicon
Material Costs

Average 2012 U.S. Prices for Materials of Interest

<table>
<thead>
<tr>
<th>Material</th>
<th>Price (per kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenium</td>
<td>$127.60</td>
</tr>
<tr>
<td>Tin</td>
<td>$27.94</td>
</tr>
<tr>
<td>Nickel</td>
<td>$17.58</td>
</tr>
<tr>
<td>Copper</td>
<td>$8.14</td>
</tr>
<tr>
<td>Silicon</td>
<td>$2.86</td>
</tr>
<tr>
<td>Zinc</td>
<td>$2.05</td>
</tr>
<tr>
<td>Sulfur</td>
<td>$0.22</td>
</tr>
<tr>
<td>Phosphate Rock</td>
<td>$0.11</td>
</tr>
</tbody>
</table>
Active Mining Operation
Copper Zinc Tin Sulfide (CZTS)
Active Mining Operations

Zinc Phosphate Zn_3P_2
Active Mining Operations
Copper Sulfide Cu₂S
Active Mining Operations
Iron Sulfide (FeS$_2$)
Active Mining Operations

Copper (I/II) Oxide (Cu_\text{x}O)
Active Mining Operations
Nickel Sulfide (NiS)
Active Mining Operations
amorphous Silicon (a-Si)
United States Geologic Survey

Example Data

<table>
<thead>
<tr>
<th>Id</th>
<th>Commodity</th>
<th>Compound</th>
<th>Site_name</th>
<th>Company_na</th>
<th>State_loca</th>
<th>County</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>575</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Copper Queen Branch Mine</td>
<td>Phelps Dodge Corp</td>
<td>Arizona</td>
<td>Cochise</td>
<td>31.429</td>
<td>-109.892</td>
</tr>
<tr>
<td>576</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Johnson Camp Mine</td>
<td>Nord Resources Corp</td>
<td>Arizona</td>
<td>Cochise</td>
<td>32.1</td>
<td>-110.062</td>
</tr>
<tr>
<td>578</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Miami Mine</td>
<td>Phelps Dodge Corp</td>
<td>Arizona</td>
<td>Gila</td>
<td>33.396</td>
<td>-110.881</td>
</tr>
<tr>
<td>579</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Miami Unit</td>
<td>BHP Copper Inc</td>
<td>Arizona</td>
<td>Gila</td>
<td>33.379</td>
<td>-110.956</td>
</tr>
<tr>
<td>580</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Pinto Valley Mine</td>
<td>BHP Copper Inc</td>
<td>Arizona</td>
<td>Gila</td>
<td>33.412</td>
<td>-110.964</td>
</tr>
<tr>
<td>583</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Miami</td>
<td>Phelps Dodge Corp</td>
<td>Arizona</td>
<td>Gila</td>
<td>33.413</td>
<td>-110.861</td>
</tr>
<tr>
<td>584</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Hyden/Ray</td>
<td>ASARCO Inc</td>
<td>Arizona</td>
<td>Gila</td>
<td>33.002</td>
<td>-110.789</td>
</tr>
<tr>
<td>585</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Morenci Mine</td>
<td>Phelps Dodge Corp</td>
<td>Arizona</td>
<td>Greenlee</td>
<td>33.067</td>
<td>-109.342</td>
</tr>
<tr>
<td>587</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Mineral Park Mine</td>
<td>Equatorial Mineral Park Inc</td>
<td>Arizona</td>
<td>Mohave</td>
<td>35.371</td>
<td>-114.152</td>
</tr>
<tr>
<td>588</td>
<td>Copper</td>
<td>CZTS, Cu2S, Cu2O, CuO</td>
<td>Mission Complex</td>
<td>ASARCO Inc</td>
<td>Arizona</td>
<td>Pima</td>
<td>32.001</td>
<td>-111.053</td>
</tr>
</tbody>
</table>
Carbon Sinks Versus Carbon Sources

Scenario 1 - Copper Mine in High NEE Location

Scenario 2 - Copper Mine in Low NEE Location

Unit: g/m² per year

NEE
High: 800
Low: -800

5/15/2013
Carbon Sequestration Scenario

Assumptions:
1. 30 Acres
2. High NEE
 Location: 600
3. Low NEE
 Location: -600

Scenario 1

- Net CO2 Sequestration rate
- 72.8 tonnes/year

Scenario 2

- Net CO2 Sequestration rate
- -72.8 tonnes/year

High Green House Effect
INTERNATIONAL ANALYSIS
Historical Copper Production Data (2013)

Based on Bloomberg Market Data

<table>
<thead>
<tr>
<th>Country</th>
<th>Kilotons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1042.4</td>
</tr>
<tr>
<td>Peru</td>
<td>979.2</td>
</tr>
<tr>
<td>Brazil</td>
<td>233.688</td>
</tr>
<tr>
<td>Canada</td>
<td>467.064</td>
</tr>
<tr>
<td>Mexico</td>
<td>406.116</td>
</tr>
<tr>
<td>Chile</td>
<td>3066.228</td>
</tr>
</tbody>
</table>

kilotons
International Metal Price

From Bloomberg System

<table>
<thead>
<tr>
<th>Ticker</th>
<th>Dataset</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Frequency</th>
<th>Last</th>
<th>Product</th>
<th>Location</th>
<th>Data Type</th>
<th>Source</th>
<th>Last Price</th>
<th>High</th>
<th>Average</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLPCTOTL</td>
<td>Index</td>
<td>Chile Copper Production Total</td>
<td>420207</td>
<td>Tons</td>
<td>Monthly</td>
<td>2/28/13</td>
<td>Copper</td>
<td>Chile</td>
<td>Production</td>
<td>Instituto Nacional de Estadistica de Chile (INE)</td>
<td>0.420M</td>
<td>0.532M</td>
<td>0.451M</td>
<td>0.356M</td>
</tr>
<tr>
<td>CMINCOPR</td>
<td>Index</td>
<td>Chile Mineral Copper Export Data</td>
<td>MILLIO 3381 MTS</td>
<td>Monthly</td>
<td>3/31/13</td>
<td>Copper</td>
<td>Chile</td>
<td>Export</td>
<td>Banco Central de Chile</td>
<td>3192</td>
<td>4924.13</td>
<td>3170.42</td>
<td>1238.21</td>
<td></td>
</tr>
<tr>
<td>PRMMCOP</td>
<td>P Index</td>
<td>Central Reserve Bank Copper Production Data</td>
<td>1000</td>
<td>81.6 M.Tons</td>
<td>Monthly</td>
<td>1/31/13</td>
<td>Copper</td>
<td>Peru</td>
<td>Production</td>
<td>Banco Central de Reserva del Peru</td>
<td>81.6</td>
<td>106.2</td>
<td>86.1</td>
<td>63.9</td>
</tr>
<tr>
<td>WMMXIMC</td>
<td>Index</td>
<td>Total Nickel Metal Imports China</td>
<td>metric 0 tonne</td>
<td>Monthly</td>
<td>12/31/13</td>
<td>Nickel</td>
<td>China</td>
<td>Import</td>
<td>World Bureau of Metal Statistics (WBMS)</td>
<td>47262</td>
<td>12483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXMMCOPR</td>
<td>Index</td>
<td>Mexico Copper Mining Production</td>
<td>33843</td>
<td>TONS</td>
<td>Monthly</td>
<td>1/31/13</td>
<td>Copper</td>
<td>Mexico</td>
<td>Production</td>
<td>INEGI</td>
<td>38105</td>
<td>26351</td>
<td>15688</td>
<td></td>
</tr>
<tr>
<td>AUPRZINR</td>
<td>Index</td>
<td>ABARE Refined Zinc Australia Minerals & Metals Production Data</td>
<td>525.4 kilotons</td>
<td>Yearly</td>
<td>12/31/13</td>
<td>Zinc</td>
<td>Australia</td>
<td>Production</td>
<td>Australian Bureau of Agricultural and Resource Economics</td>
<td>571.9</td>
<td>374</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLPCREFI</td>
<td>Index</td>
<td>Chile Copper Production Refined Total</td>
<td>3717</td>
<td>tons</td>
<td>Monthly</td>
<td>12/31/11</td>
<td>Copper</td>
<td>Chile</td>
<td>Production</td>
<td>Instituto Nacional de Estadistica de Chile (INE)</td>
<td>3717</td>
<td>15607</td>
<td>8932</td>
<td>1199</td>
</tr>
<tr>
<td>WMNXEXB</td>
<td>R Index</td>
<td>Total Nickel Metal Exports Brazil</td>
<td>metric 0 tonne</td>
<td>Monthly</td>
<td>12/31/13</td>
<td>Nickel</td>
<td>Brazil</td>
<td>Export</td>
<td>World Bureau of Metal Statistics (WBMS)</td>
<td>1886</td>
<td>941</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Bloomberg System, 5/15/2013
Finding the Right Data

<table>
<thead>
<tr>
<th>Product type</th>
<th>Price</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ore</td>
<td>• Spot Price</td>
<td>• Production</td>
</tr>
<tr>
<td>• Refined metal</td>
<td>• Fair Price</td>
<td>• Consumption</td>
</tr>
<tr>
<td></td>
<td>• Historical Price</td>
<td>• Export</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Import</td>
</tr>
</tbody>
</table>

Available market data in Bloomberg System of related material
Reference Sources

USGS Minerals Yearbook and Mineral Commodity Summaries

Literature review of previous analyses

Literature review of previous analyses

Bloomberg System - Current and historic mineral pricing
Project Webpage Structure

SEP-Thrust

People

Publication

Presentation

Opportunities

Data

Faculty

Staff

Student

Graduate

Undergraduate

Graduate

Undergraduate
Manufacturing Process
- Mining
- Smelting
- Refining
- Secondary Consumption (recycling)
- Transportation

Material Acquisition
- Ecological Impacts
- Economic Impacts
- Social Impacts
- Reserves
- Individual production rates
- Ore grade (historic trends)

Cell Components
- Analysis of components