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A B S T R A C T

Temperate and semiarid grasslands comprise 80% of the land area on the Mongolian Plateau and environs,
which includes Mongolia (MG), and the province of Inner Mongolia (IM), China. Substantial land cover/use
change in the last few decades, driven by a combination of post-liberalization socioeconomic changes and ex-
treme climatic events, has degraded these water-limited grassland's structure and function. Hence, a precise
estimation of canopy cover (CC, %) and aboveground biomass (AGB, g m−2) is needed. In this study, we ana-
lyzed>1000 field observations with sampling during June, July and August (JJA) in 2006, 2007, 2010 and
2016 in IM and 2010–2012 and 2014–2016 in MG. The field sampling was stratified by the dominant vegetation
types on the plateau, including the meadow steppe, the typical steppe, and the desert steppe. Here we used
Moderate Resolution Imaging Spectroradiometer (MODIS) derived surface reflectance and vegetation indices
optimized for low cover conditions to develop and test predictive models of CC and AGB using observed samples
as training and validation data through rule-based regression tree models. We then used the predictive models to
estimate spatially-explicit CC and AGB for the plateau over the last decade (2000–2016). Our study demon-
strated the effectiveness of our predictive models in up-scaling ground observations to the regional scale across
steppe types. Our results showed that model R2 and RMSE for CC and AGB were 0.74 (13.1%) and 0.62
(85.9 gm−2), respectively. The validation R2 and RMSE for CC and AGB were 0.67 (14.4%) and 0.68
(76.9 gm−2), respectively. The mean ± SD for CC and AGB were 24.9 ± 23.4% and 155.2 ± 115.2 gm−2,
respectively. We also found that our scaled up estimates were significantly related to inter-annual climatic
variability and anthropogenic drivers especially distance to urban/built-up areas and livestock density. In ad-
dition to their direct use in quantifying the spatiotemporal changes in the terrestrial carbon budget, results from
these predictive models can help decision makers and rangeland managers plan sustainable livestock practices in
the future.

1. Introduction

Semiarid ecosystems cover 41% of the terrestrial surface and sup-
port 38% of the global population, of which a greater proportion in-
cludes most developing countries (Reynolds et al., 2007). While tropical
forest biomes dominate the terrestrial carbon sink, its inter-annual
variability is controlled by semiarid ecosystems which are strongly as-
sociated with circulation-driven variations in precipitation and tem-
perature (Ahlström et al., 2015). Higher carbon turnover rates in
semiarid ecosystems were found to be important drivers of inter-annual
variability of the global carbon cycle with projections suggesting that

tropical forest ecosystems might become less relevant drivers (Poulter
et al., 2014). The canopy cover (CC) and above ground biomass (AGB)
of these semiarid ecosystems are relatively low, but given their large
extent, climate driven dynamics coupled with anthropogenic mod-
ification can significantly impact their vegetation structure and func-
tion as well as regional and global carbon budgets (Ahlström et al.,
2015).

The Eurasian steppe constitutes a major portion of global temperate
grasslands and forms a contiguous belt across the continent from the
Mediterranean basin to eastern China (Wesche et al., 2016; Qi et al.,
2017). The Mongolian steppe represents a significant proportion of the
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Eurasian steppe that is largely intact with high biodiversity (John et al.,
2008; Khishigbayar et al., 2015). However, these grasslands and the
pastoralists that they support face an uncertain future owing to inter-
actions among a warming trend over the past 50 years, an increasing
frequency in extreme climate events, rapid changes in land cover/use
(e.g., increasing grazing density and mining) and changes in govern-
ance and policies (Fernández-Giménez et al., 2012; Reid et al., 2014;
Chen et al., 2015b; Khishigbayar et al., 2015; John et al., 2016;
Fernández-Giménez et al., 2017). Precipitation, the major limiting
factor in these semiarid ecosystems, has high temporal and spatial
variability, while a combination of droughts and dzuds (i.e., severe
winter associated with high livestock mortality) is known to explain the
inter-annual dynamics in AGB (Bai et al., 2004; John et al., 2013b).

Livestock sustainability in Mongolia and other semiarid ecosystems
depends on dry season forage which has high spatiotemporal variability
(Jacques et al., 2014). The timely monitoring of CC and AGB through
synoptic-scale remote sensing is thus essential for forage estimation and
in turn, determination of carrying capacity of livestock population en-
abling regulation of stocking rates for sustainable use of grassland re-
sources (Rasmussen et al., 1999; Marsett et al., 2006). The impact of
both climate and anthropogenic drivers on ecosystem structure and
function as represented by CC and AGB is of significance to our un-
derstanding of carbon stocks of the Mongolian Plateau (MP)’s grassland
ecosystems (Xie et al., 2009; Zhang et al., 2014).

Scientific investigations on estimating CC and AGB in semiarid en-
vironments over large extents (e.g. the Sahel and the MP) recommend
sampling data over a range of vegetation types, biomes and vegetation
zones over the growing season in order to obtain robust calibration
models (Guan et al., 2012; Jacques et al., 2014; Ferner et al., 2015).
Most grassland scale-up studies are limited in terms of measurements
(Ma et al., 2010) or sampling extent along relatively short environ-
mental gradients. Furthermore, very few studies cover different phe-
nological stages of the growing season (Jacques et al., 2014; Ferner
et al., 2015). Such surveys are both expensive and time-consuming and,
therefore, satellite-based remote sensing using wide-swath sensors like
the MODerate-resolution Imaging Spectroradiometer (MODIS) are
especially valuable in remote areas of large areal extent like the MP for
rapid acquisition of vegetation seasonal dynamics at the landscape and
regional scales. Satellite-derived vegetation indices (VI) are considered
as proxies of primary productivity and linearly related to several bio-
physical variables such as canopy cover (i.e., the proportion of surface
unit area obscured by vegetation matter when viewed from above), leaf
area, and chlorophyll (Tucker and Sellers, 1986). VIs from Landsat TM
or MODIS obtained during the same month and year (Xie et al., 2009;
Zhao et al., 2014) have been used to scale-up CC and AGB from the
landscape to the regional scale through statistical models (Halperin
et al., 2016; Zhang et al., 2016). However, these empirical models have
serious drawbacks owing to uncertainties in their model coefficients
which are site-specific and differ by ecosystem type and season. In
addition, most CC and AGB scale-up models are based on the normal-
ized difference vegetation index (NDVI), which is sensitive to the soil
background signature and therefore not optimal for semiarid ecosys-
tems with< 50% canopy cover (Huete et al., 2002; Chopping et al.,
2008; Jacques et al., 2014). There have been few studies which focused
on large area estimation of dry forage and canopy cover using dry ve-
getation VIs optimized for low cover conditions (e.g., enhanced vege-
tation index (EVI), normalized difference senescence vegetation index
(NDSVI) (Marsett et al., 2006; Chopping et al., 2008; Jacques et al.,
2014; Guerschman et al., 2015). The ability of MODIS-derived dry
forage indices to estimate dry season biomass has also been limited due
to the lack of representative, in situ data to serve as training data.

Non-parametric, data-mining/machine learning methods (e.g.,
Random Forest and Cubist) have been used in the recent past to scale-
up net ecosystem production (NEP) and gross primary production (GPP)
from eddy covariance towers (Xiao et al., 2010; Wylie et al., 2016).
However, few studies have used RF or Cubist to scale-up from

extensive, in situ samples of CC (Lehnert et al., 2015; Halperin et al.,
2016) and fewer still for AGB scale-up (Blackard et al., 2008) to the
national scale. Regression tree algorithms, and Cubist in particular are
uniquely suited for dealing with nonlinear relationships, utilizing con-
tinuous and categorical variables, and modeling complex interactions
(Xiao et al., 2010; Wylie et al., 2016). They also provide an alternative
to precipitation driven, process based models which are limited by the
spatial variability of rainfall and by the sparseness of meteorological
stations in remote areas such as the Eurasian Steppe (Wylie et al.,
2016). While regression trees are prone to overfitting, this drawback
can be attenuated through cross validation and combining several rule-
based models into committee models which are averaged for a final
prediction (Xiao et al., 2008; Wylie et al., 2016).

Most scale-up studies on the MP are limited by extent as it is difficult
to obtain in situ measurements while maintaining an adequate number
for stratified random sampling (Feng et al., 2005; Gao et al., 2012; Zhao
et al., 2014). A notable exception is a study where net ecosystem pro-
duction was scaled up from eddy covariance flux towers and MODIS VIs
in Inner Mongolia and surrounding provinces to obtain regional cov-
erage using Cubist rule-based models (Zhang et al., 2014). There have
been far fewer scaling up studies in Mongolia, which are limited tem-
porally and in spatial extent (Angerer, 2012). Thus, there exists a
knowledge gap regarding CC and AGB estimates that can be addressed
by developing remote sensing products customized for the MP.

Here we investigate the relationships between extensive in situ
measurements across the MP and VIs derived from the MODIS Nadir
BRDF Adjusted Reflectance (NBAR) product using regression tree rule-
based models. Our objectives were to: 1) develop non-parametric pre-
dictive models to scale-up CC and AGB using MODIS 500m data along
with ancillary variables across the entire MP; 2) model uncertainties
and quantify inter-annual variability of peak season CC and AGB; and 3)
explain the spatiotemporal heterogeneity of CC and AGB by examining
the impact of anthropogenic drivers and inter-annual climatic varia-
bility.

2. Materials and methods

2.1. Study area

The MP covers approximately 2.7× 106 km, bounded by 35°N
-55°N latitude and 90°E-130°E longitude. The elevation of the MP varies
greatly with an average elevation of over 1285m and a relief of 4198m.
Mean annual temperature ranges from −4.5 °C to 8.6 °C (Yu et al.,
2003; Nandintsetseg et al., 2007; Bai et al., 2008), while the mean
annual precipitation (MAP) varies from 368mm in the meadow steppe
to 166mm in the desert steppe, with up to 75% of annual rainfall oc-
curring during the summer (JJA) (Rao et al., 2015). The plateau in-
cludes three steppe types, the meadow-mountain steppe, the typical
steppe, and the desert steppe (25.1, 26.1 and 27.2% of the entire area,
respectively) (Hilker et al., 2014; Wesche et al., 2016), with their dis-
tribution determined mostly by the precipitation gradient (Fig. 1). The
typical steppe corresponds to the cold, semi-arid climate type (BSk) of
the Köppen classification with a MAP of 300mm. The typical steppe is
predominantly herbaceous in nature with a vegetation cover of
25–100% that is characterized by Stipa krylovii, Stipa grandis, Carex
duriusula, Cleistogenes spp., Leymus Chinenis, and Artemisia frigida (in
overgrazed areas). The meadow-mountain Steppe corresponds to the
subarctic climate in the northeast with cool summers and severe dry
winters (Dwc) in the Khangaii Mountains of Mongolia and the Greater
Khingan Mountains in Inner Mongolia with a MAP of 400mm. The
meadow steppe consists of moist grasslands with high canopy cover of
60–90% (Liu et al., 2013), and herbaceous species that are less tolerant
to drought, including species such as Poa attenuata, Festucca lenensis,
Stipa baicalensis, Filifolium sibiricum, Leymus Chinenis, Carex pediformis
and Artemisia frigida (Fernández-Giménez and Allen-Diaz, 1999;
Khishigbayar et al., 2015). The desert steppe corresponds to the cold
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desert climate of BWk with a MAP of 150–200mm. The desert steppe
has more open vegetative cover (10–25%) and is characterized by
xerophytic shrubs such as Caragana spp., Artemisa xerophytica, and Ar-
temisia ordosica, perennial forbs such as Allium polyrrhizum and Allium
anisopodium, and xerophyte herbs like Stipa gobica (John et al., 2013a;
Liu et al., 2013; John et al., 2016; Wesche et al., 2016).

2.2. Field measurements and sampling design

We sampled across diverse precipitation and grazing pressure gra-
dients in the dominant steppe types on the MP (Fig. 1). Field sampling
was carried out over a period of 10 years (2006–2016) with a total of
1188 sampling sites. The measurements were sampled extensively over
different phenological stages during JJA and were also well distributed
over MAP regimes (150–500mm). Each sampling site is representative
of the dominant steppe vegetation type for that particular landscape
and is relatively homogeneous (Table 1). We used the conventional
plot-based quadrats technique that have been widely applied in com-
munity ecology of grassland studies for estimating canopy cover. Spe-
cifically we used a 0.5×0.5m quadrat with three replicates within a
30×30 m plot at each site. CC, AGB, and species were recorded at each
quadrat. Prior to each field season, the quadrat frame was marked by
10×10 grid mesh to assure CC estimate accuracy and consistency. CC
was measured by counting grid squares filled with vegetation. The AGB
of herbaceous grassland species was measured by harvesting herbac-
eous samples clipped at the ground level and their green (or wet)
weight noted using a field balance. Samples were oven dried later at the
laboratory and then weighed.

Our sampling sites also covered different levels of grazing pressure

Fig. 1. Multi-year in situ measurements and isohyets (dashed lines) derived from CRU TS323 mean annual precipitation (1981–2014) overlaid on vegetation types on
the Mongolian Plateau and its environs. The thick line denotes the border between the Republic of Mongolia and the province of Inner Mongolia, China.

Table 1
The mean (SD) of in situ canopy cover (CC) (%) and aboveground biomass
(AGB) (g m−2) of different steppe types on the Mongolian Plateau, between
June and August during 2006–2016 (n=1187).

Year Type n CC (%) AGB (gm−2)

2006 Meadow Steppe 2 57.5 (14.2) 349.4 (199.8)
Typical Steppe 38 42.9 (19.5) 207.9 (147.8)

2007 Forest Steppe 2 29.2 (0.8) 204.6 (36.6)
Meadow Steppe 6 37.5 (20.6) 428.9 (283.7)
Typical Steppe 27 16.7 (10.6) 303.6 (360.8)
Desert Steppe 29 11.0 (4.2) 90.7 (69.0)

2010 Meadow Steppe 92 46.0 (17.6) 398.8 (254.6)
Typical Steppe 279 47.4 (16.9) 415.6 (207.4)
Desert Steppe 117 27.0 (12.1) 132.5 (73.4)

2011 Meadow Steppe 44 52.7 (15.8) 176.1 (162.9)
Typical Steppe 59 46.4 (17.9) 239.7 (186.2)
Desert Steppe 32 28.1 (16.6) 95.0 (64.2)
Desert 2 36.3 (23.8) 26.6 (6.6)

2012 Meadow Steppe 10 70.0 (12.2) 145.2 (48.3)
Typical Steppe 53 65.5 (12.6) 206.1 (102.8)

2013 Meadow Steppe 5 3.3 (1.7) 137.6 (52.1)
Typical Steppe 172 24.5 (24.8) 209.6 (143.0)
Desert Steppe 55 7.0 (18.4) 89.7 (157.8)
Desert 5 0.2 (0.1) 59.6 (16.1)

2014 Meadow Steppe 21 78.0 (9.8) 139.5 (51.6)
Typical Steppe 20 65.8 (15.7) 141.1 (63.1)

2015 Meadow Steppe 7 55.7 (7.3) 120.2 (75.9)
Typical Steppe 28 50.2 (17.3) 126.2 (99.8)
Desert Steppe 2 25.0 (14.2) 43.6 (62.7)

2016 Meadow Steppe 29 70.0 (18.8) 213.2 (106.0)
Typical Steppe 22 34.3 (23.2) 126.3 (68.8)
Desert Steppe 18 9.2 (9.5) 90.0 (64.4)
Desert 11 6.5 (5.4) 109.1 (100.3)
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with transects moving away from the population centers to represent
diverse vegetation structure. This is based on past research which
suggests that degradation owing to grazing pressure would be greater in
the mountain-meadow steppe complex, as compared to the desert
steppe, and at intermediate levels in the typical steppe (Angerer et al.,
2008). Transect samples were stratified by the dominant meadow-
mountain, typical and desert steppe vegetation types to obtain re-
presentative ecological structure as well as the adjacent ecotones that
border the steppe (e.g., understory communities in the forest steppe and
desert vegetation types). Delineation of forest, meadow steppe, typical
steppe, desert steppe types was based on a vegetation map jointly de-
veloped by the Institute of Botany, Chinese Academy of Sciences and
the Institute of Botany, Mongolia (Wang et al., 2013; John et al., 2016).

Observed CC generally declined across the precipitation gradient
with high values in the meadow steppe (45–78%), intermediate values
in the typical steppe (34–50%) and low values in the desert steppe
(10–26%) across the years (Table 1). Similarly, observed AGB across the
growing season was the highest in the meadow steppe, with values
ranging from 213.2 gm−2 in MG (2016) to 428.9 gm−2 in IM (2007).
Typical steppe AGB measured across the growing season was highly
variable, ranging from 126.3 ± 68.8 gm−2 in MG (2016) to
303.6 ± 68.84 gm−2 (2007) in IM (Table 1). Desert steppe AGB esti-
mates varied from 89.96 to 94 gm−2 while desert AGB values were the
lowest, ranging from 26.6 to 59.6 gm−2 (Fig. 1, Table 1).

2.3. Spatial data

Several remote sensing products were used to estimate the measures
of land surface properties and scale-up in situ measurements to the
region. MODIS data are especially suited for scaling up CC and AGB
owing to it high revisit frequency, and ability to measure large areal
extents. We used the MODIS Nadir BRDF Adjusted Reflectance (NBAR)
(MCD43A4 V006) combined Terra and Aqua product to obtain surface
reflectance (Schaaf, 2015) from NASA EOSDIS's data portal (https://
earthdata.nasa.gov/). The 500m resolution MODIS NBAR product
provides 8-day composites of normalized reflectance that are corrected
for bidirectional and atmospheric effects (Schaaf et al., 2002; Schaaf,
2015). The MODIS reprojection tool (MRT) was employed to mosaic
nine MODIS tiles per 8-day period and project the surface reflectance
data for July and August of 2000 through 2016 to the Albers Equal Area
projection and WGS 84 datum. The surface reflectance data were
cleaned of cloud and data artefacts using the MCD43A2 V006 quality
assurance product. The derived MODIS VIs include proxies of vegeta-
tion cover, greenness and vigor such as NDVI, EVI (Huete et al., 2002)
and enhanced vegetation index-2 (EVI-2) (Jiang et al., 2008). We also
included water content indices such as the normalized difference water
index (NDWI) (Gao, 1996), land surface water index (LSWI) (Xiao et al.,
2002) and the normalized difference senescence vegetation index
(NDSVI). The use of the visible and NIR domain is limited in water-
limited ecosystems owing to the difficulty in distinguishing dry vege-
tation from background soil signature (Jacques et al., 2014). LSWI and
NDSVI both use the SWIR band which is sensitive to changes in vege-
tation water content. We also used the inverse of MODIS NIR bands,
after scaling MODIS NBAR Band 2 reflectance to 8-bit in order to obtain
a reversed image (i.e., 255-NIR), as canopy height was found to be
inversely related to NIR reflectance magnitudes (Table S1) (Qi et al.,
2002; Marsett et al., 2006; Jacques et al., 2014). In order to reduce the
dimensionality and to decrease the number of variables in rule-based
modeling, we derived tasseled cap brightness, greenness and wetness
components (TCbright, TCgreen, TCwet) which serve as proxies of albedo,
vegetation, and moisture, from the 500m MODIS NBAR bands instead
of using the NBAR reflectance directly in modeling (Lobser and Cohen,
2007).

We used the SRTMGL1 Global 1 arc sec (30m resolution) V003 DEM
(NASA-JPL, 2013) product to characterize elevation over the MP. We
also obtained first order derivatives such as slope and aspect to aid in

stratification. Categorical variables such as vegetation types were used
to delineate forest, meadow steppe, typical steppe, and desert steppe
types (Wang et al., 2013). The datasets listed above served as predictor
variables to obtain wall-to-wall coverage of scaled up CC and AGB. We
used the MODIS Land Cover Type 500m product (MCD12Q1) to mask
out forest and cropland cover classes using the University of Maryland
classification scheme in order to confine the study to the grassland
cover type.

We acquired total surface precipitation (PRECTOTCORR) and 2m
air temperature (T2M) from NASA's Modern-Era Retrospective Analysis
for Research and Applications (MERRA) meteorological reanalysis da-
taset. The MERRA-2 reanalysis data with 0.5° × 0.67° resolution were
acquired via the Goddard Space Flight Center simple subset portal
(http://disc.sci.gsfc.nasa.gov/SSW/) (Rienecker et al., 2011; Bosilovich
and Lucchesi, 2016) to obtain high quality, long-term precipitation data
for 1981–2016. The monthly data were averaged to calculate MAP, the
mean annual temperature (MAT), mean growing season precipitation
(MGP), mean growing season temperature (MGT) and seasonal com-
posites of spring (MAM) and summer (JJA) in order to explain the
variability in CC and AGB variability.

2.4. Regression tree analysis and validation

We used an open source version of the Cubist (Quinlan, 1993) rule-
based package in R (vers. 0.0.20) (Kuhn et al., 2017) to scale-up CC and
AGB in situ measurements to the plateau scale using the MODIS and
SRTM DEM derived data listed above. Cubist rule-based algorithms
typically assign class membership through recursive partitioning of
input datasets into homogeneous subclasses (Xiao et al., 2010). Pre-
vious studies suggest that: rule-based methods can account for non-
linear relationships between observed and predicted variables, are
more effective than multivariate linear regression, and are easier to
interpret than neural networks (Huang and Townshend, 2003; Wylie
et al., 2016). The Cubist method creates a RT where the terminal nodes
are linear regression models.

Regression tree methods such as RF (Breiman, 2001) use recursive
partitioning and each final node is associated with a single value. By
contrast, Cubist develops a number of multiple linear regression sub-
models, and each sub-model is associated with a set of rules (Xiao et al.,
2008). A Cubist model is similar to a piecewise linear model with the
exception that rules overlap each other. Cubist also differs from RF in
that its predictive accuracy can be improved by combining with in-
stance-based (similar training cases) or nearest neighbor's model to
predict the target value of a new case using the average predicted va-
lues of the n most similar cases. Such composite models have been
shown to be more accurate than rule-based models alone. Cubist can
also generate committee models. Each committee model consists of a
set of sub-models, each of which is associated with a set of rules. For
each case, each member of the committee generates a prediction, and
all the members' predictions are averaged to provide the final predic-
tion.

Cubist has been used in the past to scale-up net ecosystem exchange
(NEE) and gross primary production (GPP) to the conterminous United
States using MODIS 500m and 1 km resolution products (Xiao et al.,
2008; Xiao et al., 2010). The MODIS derived datasets listed in section
2.3 were used as predictor variables to estimate and map 8-day com-
posites of CC and AGB throughout the peak growing season (i.e., July,
August). We also used elevation, slope and aspect as well as categorical
variables (e.g., steppe type) as predictors to improve model prediction
through stratification.

We validated the Cubist committee models by randomly dividing
the data into training (80%) and testing (20%) samples for model ca-
libration and model validation, respectively. In order to determine the
model performance, we used the root mean square error (RMSE), the
mean absolute error (MAE), mean absolute percentage error (MAPE),
and coefficient of determination (R2) to quantify goodness of fit and
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model accuracy. We also calculated the root mean square error of va-
lidation (RMSEv) in order to compare with the standard error of re-
gression (i.e., RMSE). A small difference between the two values in-
dicates that the model is not overfitting (Andersen et al., 2005;
Giannico et al., 2016). In addition, we calculated the relative RMSE,
RMSEv and MAE expressed as percentage (MAPE), with lower values
indicating lesser residual variance and higher model precision and ac-
curacy. We evaluated the model performance using scatterplots of
predicted vs observed CC and AGB. Variable importance (VarImp)
analyses were conducted using the R package Caret (vers. 6.0–78) in
order to assess the relative contributions of the predictor variables to
the modeling process (Kuhn, 2017). Variables of importance are linear
combinations of the predictor variables usage in the Cubist RT rule
conditions and the linear models. We also constructed a Multiple Linear
Regression (MLR) model through a step-wise regression using the pre-
dictive geospatial variables and the CC and AGB variables for com-
parison with the rule-based regression tree analysis.

2.5. Socioeconomic data and disturbance predictor variables

We obtained census data that includes total population at Level-2,
county-level administrative divisions (Soum in MG, N=337 and Xiàn
in IM, N=90). In addition, official estimates of total livestock popu-
lation and livestock types (i.e., sheep, goat, cattle, and horses) were
obtained from the National Statistical Office Yearbooks in MG. Similar
data were obtained from statistical yearbooks and Xiàn level authorities
in IM (Statistical Bureau of Inner Mongolia, 1989–2014). The annual
livestock census in MG is only taken at the end of the year, whereas the
livestock census in IM is collected twice a year (mid-year and year-end).
Therefore, we ensured that only data from the end of the year were used
for comparative purposes. Livestock and human population were nor-
malized by area to obtain livestock and human population densities
(LIVD & POPD). We calculated Euclidean distance (m) to larger towns
that are provincial capitals of level-1 administrative units (Aimags or
prefectures in MG and IM, respectively) as well as distance to level-2
administrative units, i.e., smaller towns or villages that serve as county
(Soum or Xiàn in MG and IM, respectively) headquarters. We used the
Mann-Kendall non-parametric trend tests to analyze the time-series of
total livestock and population densities and the Theil-Sen method (Sen,
1968) for slope estimation for the study period. The distribution of
slope trends at the Soum/county level was mapped to examine the
variability of the predicted CC and AGB trends. The ppcor package in R
was used to compute partial correlations between the scaled up CC/
AGB estimates averaged at the county level, and climate and anthro-
pogenic drivers after eliminating the effect of all other driver variables
(Kim, 2015).

A time-series cross-sectional analysis accounted for the influence of
livestock density, CC and AGB in both MG and IM. We employed a fixed

effects model to account for time effects in the estimation. Both
Lagrange multiplier and Hausman tests statistically support the suit-
ability of the fixed effects model. The estimation model takes the fol-
lowing form:

= + + = …… = ……Y α β X e i N t T1, , 1, ,it i it it1 (1)

= + + ∗ + = …… = ……Y α β X β C D e i N t T1, , 1, ,it i it it i it1 2 (2)

where Y is a predicted AGB/CC, i is the Soum/county, t is a year from
2006 through 2016, αi is an intercept, β is a scalar, eit is a non-ob-
servable random term, and X is a set of independent variables. The
independent variables consist of LIVD, MAP, MAT, and Di, regional
dummy variables, (i.e., desert, typical, and meadow steppe). To control
regional differences on the livestock density, we introduced β2Cit ∗Di as
an interaction term between independent variable, LIVD, and regional
dummy in formula (2). By applying LIVD on Cit—the interaction term
can be regarded as an adjustment to the slope coefficient on LIVD for
different steppe types. We used the estimates of CC and AGB in the
desert vegetation category as a reference baseline for the regional
dummy.

3. Results

3.1. Model development and evaluation

Our predictive rule-based models for CC had NDSVI, NDWI, and
TCbright as variables of importance with a MAE of 10.26% (11%; MAPE)
(Table S4) and consisted of five Cubist committee models made of 22
rule-based sub models (Appendix). The best predictive rule-based
models for AGB had LSWI, NDVI, and NDWI as variables of importance,
with a MAE of 59.83 gm−2 (9%) (Table S4) and consisted of five Cubist
committee models made of 14 rule-based sub-models (Appendix).

Significant correlations were found in randomly selected CC and
AGB predicted-observed pairs, which captured most of inter-annual and
intra-season (JJA) variability and were statistically significant
(p < 0.05) (Fig. 2). The models estimated CC and AGB reasonably well,
considering the fact that the observations were from numerous sites,
across diverse ranges of vegetation types, crossed climate and dis-
turbance gradients and collected over multiple years. The model per-
formance varied by site and vegetation type. The predicted-observed
plots depicted a xeric-to-mesic gradient when stratified by desert, ty-
pical and meadow steppe. However, our CC model underestimated re-
latively high (observed) canopy cover in the desert steppe which is
typical of shrub patches in a matrix of sparsely vegetated landscape
dominated by xeric grass species (Fig. 2a, Fig. S3). The committee
models also underestimated CC in some typical and meadow steppe
sites with model performance tapering off at the 60% observed cover
threshold. With a few exceptions, AGB was slightly underestimated by

Fig. 2. Scatterplot of observed and predicted: a) canopy cover and b) aboveground biomass. The solid line depicts the 1:1 line between observed and predicted
values.

R. John et al. Remote Sensing of Environment 213 (2018) 34–48

38



committee models in most typical and meadow steppe sites for values
over 300 gm−2 (Fig. 2b).

The Cubist committee models performed well in the prediction of
CC with the best model consisting of predictive variables: NDSVI, NDWI
and TCbright (Table 2). The CC Cubist committee model performed
better than the stepwise regression (R2 of 0.71 and 0.63, respectively)
(Table 2, Table S2). The AGB committee model also performed better
than the stepwise regression model (R2 of 0.62 and 0.40, respectively)
(Table 2, Table S2). The committee model for AGB consisted of the
following variables of importance: NDVI, LSWI, TCwet and NDWI.

Cubist committee models were also developed for CC and AGB for
the two political entities, MG and IM (Table 3). The CC committee
models performed better at the political unit scale (MG and IM) com-
pared to the entire plateau (Table 3). The AGB committee model had a
greater predictive power for IM but decreased when the study extent
was limited to MG (Table 3). The variables of importance for CC in MG
and IM were TCgreen, and TCbright, as well as water content indices such
as (i.e., NDWI and NDSWI). VIs and water content indices (i.e., EVI,
NDVI, NDWI, TCgreen, and TCwet,) were the best predictors in AGB
committee models at the MG and IM scale.

3.2. Model validation

The validation of the predictive model showed that CC was esti-
mated fairly well with an RMSE and RMSEv of 13.73% (14% relative
RMSE) and 14.44% (16% relative RMSEv), respectively at the plateau
level (Table 2, Table S5). The AGB predictive model also performed
well with an RMSE and RMSEv. of 85.87 gm−2 (13%) and 76.87 gm−2

(16%), respectively (Table 2, Table S5). The predictive model for CC
had a higher predictive ability (R2= 0.73 and 0.77) in IM and MG,
respectively, than at the plateau level, with IM having a lower RMSEv
than MG (Table 3, Table S5). The models of CC had lower predictive
ability for steppe vegetation types with the exception of desert steppe
types (R2= 0.82).

The AGB predictive model at the level of the political unit explained
some of the variation in MG (R2= 0.55) with an RMSEv of 56 gm−2

(16%) (Table 3, Table S5). In contrast, the validity of the IM AGB
predictive model was low, with a higher RMSEv of 119.64 gm−2 (21%)
(Table 3, Table S5). The predictive models of AGB at the steppe level

had superior predictive ability, especially for the typical steppe type (R2
.

= 0.72), with an RMSEv of 73.06 gm−2 (17%) (Table 3, Table S5).
Similarly, the AGB predictive model for the meadow steppe performed
reasonably well with a lower RMSEv of 99.87 gm−2 (19%) (Table 3,
Table S5). In contrast, the AGB predictive models in the desert steppe
had the highest RMSEv of 84.4 gm−2 (33%) (Table 3, Table S5).

3.3. Canopy cover and AGB on the Mongolian plateau and environs

The inter-annual variability of CC and AGB varied across steppe
types but was more pronounced in MG than in IM (Fig. S1 and Fig. S2).
The spatial distribution of predicted CC and AGB (Fig. 3, Fig. 4) had
high heterogeneity and varied along precipitation, latitudinal/tem-
perature and elevation gradients (Table 1). The Mann-Kendall trends
analysis of the July–August average for 8-day CC and AGB during
2000–2016) showed significant changes in the eastern provinces of MG,
namely Dornod, Sukhbaatar and, Khentii (Fig. 5). This increase in CC
and AGB was also manifested in central and western provinces of MG,
including northern Soums of Ovorkhangai, Bayankhongor and Khovd
and Bayan-O'lgii (Fig. 5). There was also a significant increase in CC
and AGB along the desert ecotone margins in Ordos, Bayannur and
Tongliao prefectures (Fig. 5a, b).

There was a significant decrease of CC and AGB in Baotou, Hohhot,
Ulanqab, Hulunbuir prefectures, and in some counties of Xilingol,
Hulunbuir Shi and Chifeng prefectures (Fig. 5a, b). Similarly, there was
a significant decrease of CC and AGB along the border of Bulgan/Ar-
khangai provinces, and some Soums of Khovsgol, Uvs, and Khentii
(Fig. 5a, b). A comparison between the averages of JA composites from
2000 to 2004 and 2012–2016 of CC and AGB also showed similar
changes when differencing was used (Fig. S4).

3.4. Climate forcing and anthropogenic drivers

At the MP scale, the partial correlation analysis showed that pre-
dicted CC had a moderate to high correlation with MAP and MGP
(rp= 0.57 and 0.56, p-value < 0.05), with a greater correlation to
summer precipitation, PJJA than to spring precipitation, PMAM
(rp= 0.52, Table 4). When the effects of temperature and anthro-
pogenic drivers (e.g., LIVD, POPD) were controlled for, the moderate
correlation remained mostly the same. A higher correlation existed
between CC and MAP, MGP in MG as compared to IM, but with a
greater correlation to summer precipitation, PJJA than to spring pre-
cipitation, PMAM (Table 4). The partial regression of CC with MAT and
MGT showed a greater negative correlation at the IM and MG scale
compared to the plateau level. This negative correlation remained when
partial regression was controlled for by precipitation and anthro-
pogenic drivers. This negative correlation between CC and annual/
seasonal indices of temperature was greater for MG than for IM
(Table 4).

CC had a weak, positive correlation with LIVD in IM and negatively
correlated with distance to cities and towns in MG.

Table 2
Prediction accuracy of canopy cover (CC) (%) and aboveground biomass (AGB)
(g m−2) by the models and validation using Cubist regression trees for the
Mongolian Plateau.

Response
variable

R2 RMSE RMSEv Variables of importance

Canopy cover 0.71 13.73 14.44 NDSVI (66.5%), NDWI (58%),
Tasseled cap-bright (50.5%)

AGB 0.62 85.87 76.87 LSWI (31%), NDVI (46.5%), Tasseled
cap-bright (21.5%), NDWI (13%)

Table 3
Summary of prediction accuracy of canopy cover (CC) (%) and aboveground biomass (AGB) (g m−2) from model development and validation using Cubist regression
trees stratified by political unit and vegetation type.

Variable Category R2 RMSE RMSEv Variables of Importance

CC MG 0.77 13.08 14.53 Tasseled cap-green (44.5%), inverse NIR1 (25.5%), Tasseled cap-bright (42.5%)
(%) IM 0.73 11.44 13.58 Tasseled cap-green (45%), NDWI (48.5%), NDSVI (46%)

Meadow Steppe 0.43 15.90 15.32 Elevation (30%), EVI (10%), NDVI (0%)
Typical Steppe 0.46 17.32 17.49 NDSVI (51.5%), inverse NIR1 (38.5%), Tasseled cap-bright (38.5%)
Desert Steppe 0.82 4.79 17.93 NDWI (34.5%), LSWI (32.5%), inverse NIR1 (20%)

AGB MG 0.55 63.15 56.00 EVI (30%), NDVI (20%), NDWI (20%)
(gm−2) IM 0.75 73.80 119.64 Tasseled cap-green (38%), Tasseled cap-wet (19.5%), NDVI (55%)

Meadow Steppe 0.52 109.85 99.87 EVI (20%), Inverse NIR1 (20%), Elevation (20%)
Typical Steppe 0.72 72.64 73.06 Tasseled cap-green (38%), LSWI (26%), NDWI (6%)
Desert Steppe 0.66 45.49 84.44 NDVI (42%) NDWI (38%), inverse NIR1 (29%)
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Predicted AGB at the plateau level showed a stronger correlation
with MAP, MGP and summer precipitation compared to spring pre-
cipitation and this relationship held when the effects from other vari-
ables were controlled for (Table 4). The AGB also showed a stronger
negative relationship with MAT and spring temperature as compared
with MGT or summer temperature. The AGB was positively correlated
with LIVD both in IM and MG as well as the MP scale. At the MP scale,
CC and AGB were negatively correlated with distance to cities and
towns. This negative correlation was stronger in MG even when pre-
cipitation and temperature were controlled for. A weaker negative
correlation was found between CC and AGB and distance to cities in IM
(Table 4).

A cross-sectional analysis at the county level found that LIVD ex-
hibited a negative relationship with CC and AGB in both IM and MG
(Model (1), (3), (5) and (7) (Table 5). This significant negative re-
lationship was stronger for CC and AGB in MG than in IM. Furthermore,
this relationship also held in models with the interaction term (Model
(2), (4), (6), and (8) (Table 5).

4. Discussion

4.1. Gridded CC and AGB estimates of the Mongolian Plateau and environs

There exist very few gridded and scaled-up estimates of AGB and CC
in the Mongolian Plateau and its adjacent regions. Some efforts were
made at smaller extents and are limited to either Mongolia (Fernández-
Giménez et al., 2017), Inner Mongolia (Zhang et al., 2014), a province
within Inner Mongolia (e.g., Xilingol, (Xie et al., 2009) or to a single
ecosystem type (e.g., temperate deserts, (Zhang et al., 2016). By con-
trast, we extensively measured both CC and AGB across the Mongolian
Plateau, and generated gridded CC and AGB estimates for the entire
region.

Our predictive models provide reasonable estimates of CC and AGB
during the active growing season over a significant range of values
0–70% and 0–400 gm−2, respectively (Table S6). These estimates are
representative of the typical range of Mongolian grasslands in IM (i.e.,
154.8 ± 17.1 gm−2), the Eurasian steppe and semiarid regions
worldwide (Kang et al., 2013; Zhang et al., 2014; Liang et al., 2016).
Our predicted AGB estimates for the meadow steppe

Fig. 3. MODIS-derived peak season canopy cover (CC, %) over the Mongolian Plateau and its environs. Maps describe July–August composites averaged over: a)
2000–2004; and b) 2012–2016. Areas under forest and cropland cover were masked out using MODIS-derived MCD12Q1 land cover product.
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(270.4 ± 79.7 gm−2) were consistent with estimates of AGB from
large area transects in IM, (228.7 ± 28.6 gm−2) (Kang et al., 2013)
and scaled up estimates in adjoining temperate grasslands in southern
Qinghai (274.5 ± 53.4 gm−2) (Liang et al., 2016). Similarly, our ty-
pical steppe estimates (173 ± 71.0 gm−2), also agreed with estimates
from large area transects in (162.8 ± 17.3 gm−2) (Kang et al., 2013)
and scale-up studies in (149.3 ± 90.4 gm−2) (Xie et al., 2009) in IM.
Our estimates for the desert steppe (64 ± 37.4 gm−2) compared fa-
vorably with other assessments conducted in the region including
measured estimates (42 ± 20 gm−2) (Khishigbayar et al., 2015) in MG
and scaled-up estimates (66 ± 72 gm−2) (Zhang et al., 2016) in MG
and IM. Although these previous studies were based on either field
measurements, scaling-up efforts at the provincial scale or for a single
biome (i.e., temperate desert), these comparisons demonstrate that our
gridded CC and AGB estimates are reasonable in magnitude. Our data
products allow us to examine the spatial patterns, seasonality, and in-
terannual variability of CC and AGB for the entire Mongolian Plateau.

Our predicted estimates of CC for meadow, typical and desert steppe
were 55.1 ± 11.5%, 26.8 ± 14.8%, and 4.06 ± 5.8%, respectively.
One of the few, comparable MODIS-derived CC products was developed

over Tibetan Plateau with CC estimates ranging from 40% in the
montane steppes/alpine steppes of Gansu and Qinghai province, to 60%
in the Kobresia pygmaea meadows in the Tibetan Autonomous Province
(Lehnert et al., 2015). Another MODIS-derived CC dataset was devel-
oped for the temperate deserts of Central Asia and reports a higher CC
range of 13 ± 16% as compared to our desert steppe CC estimates of
4 ± 5.8% (Zhang et al., 2016). They also reported a CC estimate of
21 ± 12% for their temperate semi-shrub and dwarf semi-shrub com-
plex (including Artemisia spp), which is within the range of our typical
steppe CC estimates of 26.8 ± 14.8%.

Our 500m scaled up estimates from 2000 to 2016, compare favor-
ably with coarse-scale (0.5× 0.5°) gridded estimates of AGB, obtained
from process-based models that covered the entire Mongolian Plateau.
This study, based on the terrestrial ecosystem model, reported a mean
net primary production (NPP) of 339 ± 72 g C m−2 yr−1 during the
1990s, which was higher than the Carnegie-Ames-Stanford Approach
model estimates (290 g C m−2 yr−1) for IM over a longer time period
from 1982 to 2002 (Lu et al., 2009). A study used Cubist RT to upscale
spatial and temporal estimates of net ecosystem production from a
network of flux towers in temperate grasslands across IM and Gansu

Fig. 4. MODIS-derived peak season aboveground biomass (AGB, g m−2) over the Mongolian Plateau and its environs. Maps describe July–August composites
averaged over: a) 2000–2004; and b) 2012–2016. Areas under forest and cropland cover were masked out using MODIS-derived MCD12Q1 land cover product.
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province, China (2000−2010) and reported a growing season NEP
range of 200–300 g C m−2 with RMSE of 0.31 g C m−2 d−1 (Zhang
et al., 2014). Another study that focused on grasslands and croplands in
the Great Plains Ecosystems of the United States also scaled up NEP
from EC towers to MODIS NDVI using Cubist RT (Wylie et al., 2016).
They reported an RMSE of 0.62 g C m−2 d−1 and 1.01 g C m−2 d−1 for
grassland and croplands, with three and five committee models re-
spectively.

It remains challenging to scale-up CC and AGB in water-limited
ecosystems with large areal extent and high inter-annual variability,
like the MP. Statistical models based on a suite of VIs derived from
satellite sensors can have a high correlation with CC or AGB during a
specific phenology period and location. However, model performance
can drop significantly when site level estimates are scaled up to large
areas, owing to high spatial heterogeneity of cover types, seasonal

variability and species/community diversity within a cover type. We
found a relatively high correlation in our predictive models against
training data, but the model performance dropped on the test dataset
when the validation was performed—with the exception of the AGB and
CC predictive models across the plateau. Some sources of error include
the spatial mismatch between the in situ sample plots and the 500m
MODIS pixels. Positional accuracy is less likely to be a major con-
tributor to error, given the 500m pixels.

Vegetation indices like NDVI and RVI have often been used to es-
timate AGB at regional scales on semiarid ecosystems such as the
Mongolian Plateau and the Sahel. However, they have been criticized
for saturating when vegetation cover is dense and are also sensitive to
the soil background signature and shadows at< 50% cover (Huete
et al., 2002). Stratified random sampling of different steppe types has
the potential to improve CC and AGB estimates owing to high

Fig. 5. Spatial changes in slope trends (2000–2016) of: a) canopy cover (CC, %); and b) aboveground biomass (AGB, g m−2) derived from metrics based on MODIS
MCD43A4 NBAR surface reflectance and ancillary variables on the Mongolian Plateau and its environs. Areas under forest and cropland cover were masked out using
MODIS-derived MCD12Q1 land cover product.
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heterogeneity in plant community structure and environmental condi-
tions. Our predictive model estimates of CC and AGB were constrained
by low density and a relatively limited sampling of xeric vegetation
types within the desert steppe and desert biome. We also limited our
sampling to herbaceous vegetation and did not sample forests. We at-
tempted to account for intra-seasonal vegetation dynamics and inter-
annual variability by synthesizing data from several annual field cam-
paigns sampled across the peak growing season. This multi-year

synthesis of in situ samples not only enabled wall-to-wall modeling of
spatially-explicit herbaceous CC and AGB and provided a record of
vegetation dynamics across the plateau, but also helped to offset the
limited number of sites sampled per year and the small plot size. Most
scale-up studies in the region are limited in scale and extent and were
conducted over a single field season or limited to a few sites. Hence, our
work is unique in its contribution to our understanding the state and
trends in spatial heterogeneity of CC and AGB on the plateau.

Table 4
Partial regression coefficients between the predicted canopy cover (CC), above ground biomass (AGB) and climate factors of mean annual precipitation (MAP), mean
annual temperature (MAT), mean growing season precipitation and temperature (MGP; MGT), seasonal precipitation and temperature for spring and summer (MAM;
JJA), anthropogenic drivers represented by total livestock and population densities (LIVD; POPD) and distance to cities and towns in IM and MG (D_city; D_town).

ALL % cover MAP MGP PMAM PJJA MAT MGT TMAM TJJA LIVD POPD D_city D_town
default 0.57 0.56 0.46 0.52 −0.32 −0.28 −0.30 −0.26 0.16 0.23 −0.11 −0.17
Prec. −0.30 −0.26 −0.29 −0.24 0.12 0.19 −0.09 −0.16
Temp. 0.57 0.55 0.45 0.52 0.16 0.23 −0.11 −0.16
Anthro 0.57 0.56 0.46 0.52 −0.32 −0.28 −0.30 −0.26

AGB default 0.62 0.61 0.46 0.57 −0.24 −0.20 −0.23 −0.20 0.16 0.26 −0.12 −0.12
Prec. −0.22 −0.18 −0.21 −0.17 0.13 0.22 −0.10 −0.10
Temp. 0.62 0.60 0.46 0.57 0.16 0.26 −0.12 −0.11
Anthro 0.62 0.61 0.46 0.57 −0.25 −0.20 −0.23 −0.20

IM % cover default 0.58 0.56 0.46 0.53 −0.33 −0.28 −0.31 −0.27 0.17 0.25 −0.11 −0.18
Prec. −0.31 −0.27 −0.29 −0.25 0.13 0.20 −0.09 −0.17
Temp. 0.57 0.56 0.45 0.52 0.17 0.25 −0.11 −0.18
Anthro 0. 58 0.56 0. 46 0.53 −0.33 −0.28 −0.31 −0.27

AGB default 0.62 0.61 0.46 0.57 −0.26 −0.21 −0.24 −0.20 0.18 0.28 −0.12 −0.12
Prec. −0.24 −0.19 −0.22 −0.18 0.14 0.24 −0.10 −0.11
Temp. 0.62 0.60 0.46 0.57 0.18 0.29 −0.11 −0.12
anthro 0.62 0.61 0.46 0.57 −0.26 −0.21 −0.25 −0.21

MG % cover default 0.62 0.60 0.48 0.54 −0.38 −0.33 −0.36 −0.30 0.22 0.32 −0.15 −0.25
Prec. −0.39 −0.33 −0.31 −0.26 0.18 0.29 −0.13 −0.22
Temp 0.61 0.59 0.48 0.54 0.21 0.31 −0.15 −0.25
Anthro 0.62 0.60 0.48 0.54 −0.38 −0.33 −0.36 −0.30

AGB default 0.64 0.63 0.48 0.57 −0.37 −0.32 −0.35 −0.30 0.19 0.28 −0.15 −0.21
Prec. −0.38 −0.32 −0.34 −0.31 0.29 0.28 −0.12 −0.19
Temp. 0.63 0.62 0.47 0.56 0.15 0.25 −0.14 −0.21
Anthro 0.64 0.63 0.48 0.57 −0.37 −0.32 −0.35 −0.30

Table 5
Cross-sectional analysis of the time-series on the impact of livestock density to AGB and CC while considering regional effects, interaction term between livestock
density and steppe types, temperature and precipitation fixed effect, and annual fixed effects.

AGB (gm−2) CC (%)

(1)
IM

(2)
IM

(3)
MG

(4)
MG

(5)
IM

(6)
IM

(7)
MG

(8)
MG

Livestock density −0.65***
(0.19)

−0.62
(0.38)

−1.09***
(0.19)

206.65***
(19.24)

−0.16***
(0.03)

−0.18**
(0.06)

−0.27***
(0.04)

44.99***
(3.73)

Regional effects
(dummy)

Desert steppe −8.39
(8.17)

−8.66
(11.17)

−6.72***
(2.22)

18.81***
(3.32)

−8.08***
(1.34)

−9.79***
(1.83)

−4.49***
(0.43)

1.08*
(0.64)

Typical steppe 168.73***
(11.22)

94.66***
(7.59)

26.13***
(2.31)

54.56***
(3.51)

10.29***
(1.15)

10.08***
(1.24)

5.27***
(0.45)

11.78***
(0.68)

Meadow steppe 109.56***
(8.08)

148.11***
(10.81)

68.80***
(2.66)

98.81***
(3.78)

20.80***
(1.57)

19.91***
(1.77)

22.07***
(0.52)

28.19***
(0.73)

Interaction terms
(Regional effects * Livestock density)

Desert steppe – 0.56
(5.16)

– −204.76***
(19.25)

– 1.09
(0.85)

– −44.83
(3.73)

Typical steppe – −0.02
(0.44)

– −206.67***
(19.23)

– 0.02
(0.07)

– −45.63**
(3.73)

Meadow steppe – −1.99
(2.33)

– −207.68***
(19.23)

– 0.43
(0.38)

– −45.19***
(3.73)

Observations 1200 1200 5379 5379 1200 1200 5379 5379
R-squared 0.64 0.64 0.78 0.78 0.72 0.72 0.85 0.85
Degree of freedom 1079 1076 5358 5355 1079 1076 5358 5355
Temperature - Precipitation

Fixed-effects
YES YES YES YES YES YES YES YES

Time fixed-effects YES YES YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. As an unbalanced panel data, the (1), (2), (3), and (4) AGB panel models are composed
of (n= 80, T= 15, N=1200), (n= 80, T=15, N=1200), (n=317, T=14–17, N=5379), and (n= 317, T= 14–17, N=5379), respectively. The (5), (6), (7),
and (8) CC panel models are composed of (n=80, T=15, N=1200), (n= 80, T=15, N=1200), (n=317, T=14–17, N=5379), and (n=317, T= 14–17,
N=5379), respectively.The reference of regional effect dummy is Desert. Temperature - Precipitation fixed-effect include Mean Annual Precipitation (MAP) and
Mean Annual Temperature (MAT). The models include time fixed-effects to control annual variability. The models (1), (3), (5), and (7) are models based on the
formula (1). The models (2), (4), (6), and (8) have an interaction term controlling the regional impacts on the livestock density.
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Water content indices like NDWI, NDSVI, and LSWI and proxies of
productivity like EVI, optimized for low cover conditions, were con-
sistently chosen as variables of importance for CC and AGB at different
extents (Huete et al., 2002; Jiang et al., 2008). We leveraged the utility
of water content indices such as NDWI, LSWI and NDSVI, all of which
use the MODIS SWIR bands to discern the difference between green
vegetation and bare soil/litter signatures, thus enabling us to success-
fully explain most of the variance in CC and AGB (Table S1) (Marsett
et al., 2006; Zhang et al., 2016). In order to reduce dimensionality and
computational complexity, we used TCgreen, TCbright, and TCwet, com-
ponents instead of using all seven MODIS NBAR reflectance bands. The
TC components enhanced the predictive ability of our rule-based
models at both the plateau and steppe-type extents.

Most scale-up studies in the region primarily used NDVI-based
predictive models (Xie et al., 2009; Zhang et al., 2016). Our CC and
AGB RT-based predictive models (Table 2, Table 3) differed in accuracy
from previous scaled up estimates in the region which differed greatly
in methods and extent of study. A study in the Xilingol prefecture
compared the use of artificial neural network (ANN, R2= 0.81,
RMSE=60) and multiple linear regressions (R2=0.59, RMSE =74) in
modeling biomass from Landsat TM scenes and produced a higher
predictive accuracy than our analysis. However, the only vegetation
index used was NDVI which can be a limitation in water limited eco-
systems with sparse cover. In another study, AVHRR NDVI3g and
MODIS NDVI were evaluated in their ability to obtain forage estimates
across MG (Fernández-Giménez et al., 2017). Observed AGB collected
at 300 sites in MG were regressed with AVHRR NDVI3g (R2= 0.79,
RMSE=22.5) and MODIS NDVI (R2= 0.70, RMSE=16.4). However,
the validation R2 for GIMMS3g was 0.52, with an RMSE of 19.6.

A study on the CC and AGB in temperate deserts across Central Asia
evaluated CC models based on NDVI (R2= 0.56, RMSE=6.67), EVI
(R2= 0.61, RMSE=7.46) and three-band maximal gradient difference
(TGDVI) (R2= 0.73, RMSE=7.77) (Zhang et al., 2016). The authors
found a wide range of predictive accuracy that overlapped with our
study, but the methods were based on OLS linear regression that is
sensitive to outliers. Our study compared favorably with a CC scale-up
study in IM grasslands, based on linear un-mixing of VIs which reported
model accuracy for NDVI (R2=0.66, RMSE=19.8), and ratio vege-
tation index (RVI) (R2= 0.58, RMSE=24.8), respectively (Li et al.,
2014). Another CC scale-up study over the Tibetan Plateau evaluated
the use of several modeling methods on MODIS NBAR reflectance,
which included support vector machine (SVR) (R2= 0.91,
RMSE=5.59), Partial Least Squares (R2= 0.86, RMSE=8.20), linear
un-mixing (R2= 0.88, RMSE=12.65), and spectral angle mapper
(R2=0.59, RMSE=8.00) (Lehnert et al., 2015). The authors suggested
that methods such as SAM and linear un-mixing, which depend on in
situ spectral end members, were inferior to advanced multivariate
methods such as PLSR or machine learning methods. A study based in
the United States which predictive models of urban forest cover and
impervious surface area derived from Landsat reflectance and tasseled
cap data found that SVR and Cubist consistently outperformed Random
Forest (Walton, 2008).

4.2. Climatic, topographic and anthropogenic controls on CC and AGB

The response of vegetation to climate drivers on the MP is highly
variable owing to the differential response of steppe types (John et al.,
2016). Our results indicate that precipitation explained most of the
variability of CC and AGB on the MP (Table 4). Mountain ranges sur-
round the MP and play a major role in limiting moisture (Hilker et al.,
2014). For example, the Northeast monsoon is limited by the Greater
Hinggan Mountains in the East. The Mongol Altai and Gobi Altai to the
south, the Khangai Mountains of Central Mongolia and the Sayan
Mountains to the north further modify the regional climate system. The
Siberian anticyclone determines the severity of winter and precipitation
rates and also plays an important role in influencing the spatial

distribution of CC and AGB (Hilker et al., 2014). Our CC and AGB maps
depict the environmental gradient across the MP and reflects the
northeast-southwest precipitation gradient in Inner Mongolia (Fig. 3,
Fig.4). The maps also depict a latitudinal gradient that extends north-
ward and includes steppe type transitions (i.e., desert-typical-meadow-
forest steppe), which agrees with other regional studies (John et al.,
2016; Zhang et al., 2016). Ongoing climate change might stimulate and
facilitate future vegetation succession, leading to uncertainty in net
carbon sequestration in semiarid ecosystems of the MP and Asian dry-
lands (Shao et al., 2013). The strong influence of summer precipitation
and temperature along with elevated CO2 on AGB over the MP may
benefit herbaceous, C3 plants which are the dominant communities in
the meadow steppe. The desert steppe conforms to the non-equilibrium
model of rangeland dynamics, where ecosystem function depends on
both the amount and timing of rainfall and is thus vulnerable to in-
creased inter-annual variability in precipitation trends. The meadow
steppe, on the other hand, is governed by the equilibrium model where
rangeland degradation can be explained by herbivory; and is thus
sensitive to livestock density (Fernández-Giménez and Allen-Diaz,
1999; Wesche et al., 2010).

A combination of the large, spatial extent, the inter-annual varia-
bility of precipitation and temperature over a 15-year period and the
rapid changes from human-induced land cover/use make the validation
of CC and AGB a daunting task (Fig. 5, Fig. S1, Fig. S2, Fig. S4). Our
non-parametric trend analysis of CC and AGB found significant, positive
trends that are consistent with the findings of other independent studies
in the region which also used MODIS data over a decade and 30-year
AVHRR records (Eckert et al., 2015; John et al., 2016). These increasing
or stable CC or AGB trends could be attributed to a decrease in grazing
pressure in provinces on the periphery such as Dornod, Sukhbaatar and
Bayan-Olgii as well as remote Soums in the Khangaai provinces of
Ovorkhangai and Bayankhongor (Fig. 5). This decrease in grazing
pressure could result from decreased population density, which in turn
can be explained by migration to provincial centers and towns from
outlying villages (Fig. 6) (John et al., 2016). On the other hand, the
provinces of the North Central region and portions of the Khangai
Mountains have the highest livestock densities in MG, but have stable
or decreasing trends in CC and AGB (Fig.5, Fig. 6). There has been a
decline in the number of herders, herding households and livestock-
owning households in MG and IM, with a concomitant increase in
service industries near cities and towns (Fernández-Giménez et al.,
2017), though the overall livestock density has increased (Chen et al.,
2015b). Negative trends in CC and AGB in MG could be explained by
the accelerated growth of Ulaanbaatar (Fig. 6b), and anthropogenic
modification, including increased grazing pressure in North Central
Mongolia and increased sedenterization by herders (Eckert et al., 2015;
Fan et al., 2016; John et al., 2016; Fernández-Giménez et al., 2017).
Negative trends in IM and MG could also be explained by the growth of
provincial cities (prefecture and Aimag centers) and the disturbance
exerted on the surrounding landscape by their urban footprint. These
cities have improved infrastructure and provide access to a range of
services, including education, health and economic opportunities (Chen
et al., 2015b; Park et al., 2017). The transition of MG into a market
economy from 2000 to the present has led to an rise in mining in some
provinces (Fernández-Giménez et al., 2017). The decrease in biomass
trends in the western province of Uvs province can be explained by coal
mines near the city of Ulangom, Coal mines in Nalaikh east of Ulan-
baatar, gold mines in the northern province of Selenge (McIntyre et al.,
2016), copper and coal mines in the southern Mongolian province of
Omnogovi (Jackson, 2015).

The effects of extreme climate events on coupled human-natural
systems are more pronounced in MG than in IM (Chen et al., 2015a;
John et al., 2016; Park et al., 2017). Vegetation cover and AGB in the
MP has been strongly influenced by the combined effects of prolonged
drought and dzuds in the last decade (Fig. S1, Fig. S2) (John et al.,
2013b). Droughts have amplified the effects of dzud through reduced
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forage availability and have led to record livestock mortality in 2003
and 2010 (Rao et al., 2015; Fernández-Giménez et al., 2017). The
drought-dzuds also drove rural-urban migration in MG between 2000
and 2014, with a 9.2% increase in the urban population. This was
followed by the 2011–2014 wet period, which fueled a further increase
in livestock stocking rates and led to a cyclical trend that was closely
coupled with extended wet and dry periods. This trend was a con-
tinuation of the rapid increase in stocking rates following the collapse
of the former Soviet Union in 1991 (Chen et al., 2015b; John et al.,
2016). Livestock herds in the Collective era had relatively constant
populations with herd mobility facilitated by state supported infra-
structure that included watering points and shelters in remote areas.
However, studies suggest that, there had been substantial changes in
the spatiotemporal patterns of grazing, post 1991, due to the increase in

stocking rates, which resulted from the increased demand of the new
market economy. The lack of state support led to the deterioration of
herding infrastructure owned by collectives with no state regulation of
stocking rates or herd mobility. Post 2000, organized groups of herders
have begun to regulate herding movements, especially long distance
migrations, in response to drought-dzuds, further adding to complexity
in spatial heterogeneity of grazing patterns (Fernández-Giménez et al.,
2017). Easier access to social goods and services has led to the se-
denterization of herders near towns and villages, leading to degraded
pastures in close proximity to population centers (Fernández-Giménez
et al., 2017). Our results offer further proof of the ecological footprint of
sedenterization, especially around towns that are provincial (Aimag)
centers and villages (Soum headquarters) (Table 4) (Fig. 6). Our cross-
sectional analysis confirms previous findings regarding the negative

a) LSKD

b) POPD

Fig. 6. Spatial changes in the Theil-Sen slope trends of: a) LSKD – total livestock density, and b) POPD – total population density. The legend shows positive slope
trends in red and negative slope trends in blue. Blank Soums or Xiàn (counties) have slope trends that are not significant. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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impact of LIVD on AGB and CC, and also confirms that the steppes in
MG are more sensitive to LIVD than those in IM (Table 5) (Chen et al.,
2015b; John et al., 2016). The impact of livestock density on CC and
AGB was lesser in IM than in MG and could be attributed to greater
herding infrastructure and pastoral management in IM (Chen et al.,
2015a; Chen et al., 2015b). We also found that the LIVD had a greater
impact on the meadow steppe as compared to other steppe types
(Table 5). Our findings validate past research which suggests that de-
gradation owing to grazing pressure was greater in the mountain-
meadow steppe complex as compared to the desert steppe, and at in-
termediate levels in the typical steppe (Angerer et al., 2008; Karnieli
et al., 2013). This implies that the sustainable rangeland management
in MG and IM is an urgent issue and needs to be location specific. AGB
and CC trends were not explained solely by LIVD but by a combination
of factors, including precipitation trends and distance to urban/built up
areas. This also confirms the findings of recent studies that some of the
recent land cover change on the plateau was attributed to the increased
urban footprint of cities and major towns in IM and MG (Fan et al.,
2016; John et al., 2016; Park et al., 2017).

Positive trends in CC and AGB in Xilingol, Ulanqab and Baotou
prefectures in IM could also be explained by the implementation of the
Returning Farmlands to Forest and Grassland Project (also known as
Grain to Green program) where marginal agricultural land was con-
verted to grasslands (Uchida et al., 2005). Similarly, the Beijing and
Tianjin Sandstorm Source Treatment Project aimed at restoring natural
vegetation in croplands (Yin et al., 2018). These programs led to a re-
duction in croplands in the dry steppe and also a 15.5% reduction in the
proportion of farmer households during 2000–2012, who had moved to
cities for employment (Yin et al., 2018). Positive trends in the Ordos
(Kubuqi desert and Mu Us Sandland) and Alashan (Badain Jarain de-
sert) prefectures can also be explained by the growth of the Three
Norths Shelterbelt program (also known as the Green Great Wall pro-
gram) which was initiated in 1978 as windbreaks to hold back the
eastward expansion of the Gobi desert (Cao et al., 2011; Tian et al.,
2015). While these ecological restoration efforts by afforestation and
dune stabilization have led to an increase in vegetation cover and AGB
(Tian et al., 2015), there has been a concomitant decrease in ground
water levels (Lu et al., 2018). This has been attributed to the high
evapotranspiration of tree species (e.g. Populus spp) chosen for affor-
estation as compared to the native species of the desert steppe which
include halophytic shrubs and herbaceous species (Cao et al., 2011; Lu
et al., 2018).

4.3. Potential rangeland management application

Estimates of CC and AGB show a high degree of inter-annual
variability and spatial heterogeneity. This suggests the need for ran-
geland management systems that are both flexible and adaptable to the
dynamics of increasingly variable climate and timely access to forage.
Owing to the high inter-annual variability, we chose to compare five
year averages of July–August composites from 2000 to 2004 and
2012–2016 (Fig. 3, Fig. 4). Our estimated CC and AGB products have
the potential to provide early warning of impending drought and re-
duced forage conditions (Fig. 5, Fig. S4) and can help enhance the
capability of decision making tools such as the Mongolia Livestock
Early Warning System (Kappas et al., 2015). One possible use of our CC
and AGB deliverables are trend maps (Fig. 5), difference maps (Fig. S4)
or standardized anomaly maps, calculated as seasonal composites
subtracted from long term average (2000–2016) and divided by stan-
dard deviation for the same period. These anomaly maps highlight
areas of above or below-average estimates of AGB. Along with ancillary
information like rainfall prediction, herd location/size and water
availability in watering holes, these trend and anomaly maps could
provide livestock managers with options to reduce stocking rates in
areas of strongly negative AGB and/or CC anomalies. The maps could
also indicate forage deficits and re-direct herders to neighboring

counties where there is a surplus of forage.

4.4. Cubist predictive models: Advantages and drawbacks

Our CC and AGB predictive models have advantages over linear
regression models, which are mostly site-specific, limited by the
amount of samples and the extent of in situ surveys. Rule-based models
also have advantages over process-based models that are mostly de-
pendent on site-level parametrizations, which are used as default over
much broader range of vegetation types and climate regimes. This re-
sults in cascading error, especially when model simulations are over
heterogeneous areas with large extent (Xiao et al., 2010; Wylie et al.,
2016). In contrast, our predictive models were constrained by CC and
AGB data from adequate sampling of herbaceous species across a wide
range of steppe/biome types and precipitation regimes. Another major
advantage of rule-based models is that they are effective in dealing with
non-parametric data.

Our rule-based models were also very cost effective as they utilize a
suite of publicly available, synoptic, geospatial data like MODIS with
high spatiotemporal resolution as well as ancillary data sets like SRTM-
derived DEMs. Furthermore, our predictive models consist of rule-
based, multivariate regression models which are intuitive and easy to
implement with less computational resources and complexity as com-
pared to ecosystem models. The rule-based models uses input variables
for model development (and consequently, mapping) only if their
prediction utility is justified (Wylie et al., 2016). However, our rule-
based models have some disadvantages when compared to process-
based ecosystem models, as they do not account for underlying pro-
cesses (e.g., photosynthesis, nitrogen cycling or deposition, and en-
vironmental stochasticity) (Zhang et al., 2012). These shortcomings
might partly explain the differences between our estimates and process-
based ecosystem model output (Xiao et al., 2010; Wylie et al., 2016).
The difference in estimates could arise from the fact that rule-based
models do not use factors that influence AGB, such as nitrogen avail-
ability and disturbance history, which can be explicitly modeled in
process-based models.

5. Conclusions

We developed rule-based predictive models to estimate 8-day, spa-
tially-explicit CC and AGB across the peak-growing season
(July–August) on the Mongolian Plateau and environs. We synthesized
multi-year, site-level observations of CC and AGB during the period
2006–2016 that represent the herbaceous vegetation of the meadow,
typical and desert steppes. We then demonstrated the viability of using
vegetation indices that were optimized for low canopy cover and water
content and derived from MODIS NBAR surface reflectance to develop
site-level predictive models for CC and AGB using non-parametric
Cubist rule-based methods. These rule-based models were used to
create spatially explicit, weekly, geospatial datasets of 500m resolution
to provide wall-to-wall coverage across the Mongolian Plateau.
Predictive model estimates of CC and AGB were comparable to esti-
mates of similar studies conducted in the area and are an improvement
over standard MLR models. The maps and statistics presented illustrate
inter-annual variability and trends in CC and AGB in the MP during the
2000–2016 period. Analysis of our ground sample data and scaled up
estimates showed that they were significantly correlated with inter-
annual climatic variability and anthropogenic drivers of change: po-
pulation density, livestock density and distance to urban/built-up areas
in provincial cities and towns/county headquarters. In addition to
providing measures of carbon stock to the community, these predictive
models offer decision makers and rangeland managers the ability to
accurately monitor grassland dynamics, and control stocking rates in
these remote and extensive grasslands. Our research study was based
on extensive field sampling, used robust upscaling approaches, with
high spatial resolution and temporal frequency and provides one of the
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first set of gridded estimates of CC and AGB for the entire Mongolian
Plateau. There is a need for further improvement and parameterization
of regression tree predictive models by incorporating new observed
data that is representative of steppe and cover types that were under-
sampled (i.e., desert and forest steppe) in both Mongolia and Inner
Mongolia. There is a need for further investigation to identify the so-
cioeconomic drivers of land use change in grassland ecosystems at finer
spatial scales.
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