Environmental Justice & Public Health: Climate, Land, & (Health) Outcome of Dengue Fever (CLOUD)
understand the spatiotemporal changes and the underlying forcing mechanisms of dengue fever in Peru
Project Overview
Dengue fever -- an infectious disease caused by dengue virus, is one of the most widely spread mosquito-borne viral diseases. Climate factors, such as temperature, humidity, precipitation, wind speed and sunshine hours, are important variables for modeling its outbreaks, magnitude and spread.
Socioeconomic and environmental factors affect the habitat of the Aedes species mosquitoes (Ae. aegypti or Ae. Albopictus), such as the urbanization, vegetation, water body, poverty, and accessibility are found to be significant factors for incidences of dengue fever. In addition, communities’ risk of dengue is influenced by the knowledge, attitude, and practice of the population, such as routine vector control activities.
Our overall objective is to to use remote sensing-based data and work with local communities to understand the spatiotemporal changes and the underlying forcing mechanisms of dengue fever in Peru, its health and environmental justice impacts, and possible options for policy interventions considering the changing climate, lands, and society
Questions to be answered
- (1) What are the quantitative contributions of land cover change, specific management practices, and climate changes (means and extremes) to the social and physical C fluxes of managed ecosystems and landscapes?
- (2) What are the spatial and temporal changes of their contributions in managed agricultural-forest landscapes?
- (3) How will future land use changes (including alternative management practices) impact C sequestration in an upper, mid-latitude managed ecosystem?
Acknowledgements
Funded by Interdisciplinary Research in Earth Science (IDS) Download project summary
Recent Activity
April 2019:
Gabriela Shirkey (PhD student) is awarded the NSF GRFP starting fall 2019
Conceptual Framework and Hypothesis
Conceptual framework of CLOUD: drivers, vulnerability, impact, and adaptation strategies. We include natural and human drivers on the vulnerability and spatiotemporal changes of dengue fever through testing 4 hypotheses in 3 thrusts. Integrated modeling will focus on the mechanisms and forecasts of future outbreaks in the contexts of environmental justice through development of adaptive and mitigative action plans. Downscaled future climate, LCLUC, human demography, and socioeconomic conditions will be the major scenarios for our model endeavors.
Figure 1. (above)
Figure 2.
Research Tasks
Task 1:
Task 2:
Task 3:
Open Data Resources
In alliance with NASA, our researchers openly share their data with the broader community. The latest information and resources from our project can be found here for exploration and education.
Data use policy
Use of this data is for non-profit, personal, or educational use only. To publish this data or apply it in other for-profit endeavours, please contact Dr. Jiquan Chen for information. For help interpreting the data, contact the author listed. Information provided here does not conflict with our committment to confidentiality or expose personal information from survey participants.
View/Download Data:
- Study areas (shape files)
Activities
Dec 1-7, 2024: Our research team conducted semistructure interviews, meetings with local collaborators, as well as site visits in Lima, Poura, and Iqutos ( Peilei Fan, Jiquan Chen, Ruben Briceno, Qing Xia, Bill Cunningham, and Sabrina Vieyra)
References
Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268-281.
Arroyo, C. (2021). Dengue—an Epidemic Within a Pandemic in Peru. Available at https://reliefweb.int/report/peru/dengue-epidemic-within-pandemic-peru. Accessed on May 23, 2022.
Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., ... & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193-205.
Baño-Medina, J., Manzanas, R., & Gutiérrez, J. M. (2021). On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections. Climate Dynamics, 57(11), 2941-2951.
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318.
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O. and Myers, M.F. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507.
Biogents USA. (2022). Biogents: When it comes to mosquitoes, nothing escapes us. Available at https://us.biogents.com. Accessed on Oct. 1, 2022.
Bomfim, R., Pei, S., Shaman, J., Yamana, T., Makse, H. A., Andrade Jr, J. S., ... & Furtado, V. (2020). Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas. Journal of the Royal Society Interface, 17(171), 20200691.
Bullard, R. D. (1996). Environmental justice: It's more than waste facility siting. Social science quarterly, 77(3), 493-499.
Cao, Z., Liu, T., Li, X., Wang, J., Lin, H., Chen, L., Wu, Z., & Ma, W. (2017). Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis. International Journal of Environmental Research and Public Health, 14.
Center for Disease Control (CDC). (2022) How to Prevent the Spread of the Mosquito that Causes Dengue. Available at https://www.cdc.gov/dengue/resources/vectorcontrolsheetdengue.pdf. Accessed on Sept. 1, 2022.
Chen, S., Liao, C., Chio, C.P., Chou, H., You, S., & Cheng, Y. (2010). Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. The Science of the total environment, 408 19, 4069-75.
Current Conservation. (2022). Coexisting with biodiversity in the city. Available at https://www.currentconservation.org/1479-2/. Accessed on Oct. 1, 2022.
Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000. Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Annals of the Association of American Geographers 90 (4): 713–737.
DeFries, R., Asner, G. P., & Foley, J. (2006). A glimpse out the window: landscapes, livelihoods, and the environment. Environment: Science and Policy for Sustainable Development, 48(8), 22-36.
Descloux, E., Mangeas, M., Menkes, C.E., Lengaigne, M., Leroy, A., Tehei, T., Guillaumot, L., Teurlai, M., Gourinat, A.C., Benzler, J. and Pfannstiel, A.. (2012). Climate-based models for understanding and forecasting dengue epidemics. PLoS neglected tropical diseases, 6(2), e1470.
Dey, S. K., Rahman, M. M., Howlader, A., Siddiqi, U. R., Uddin, K. M. M., Borhan, R., & Rahman, E. U. (2022). Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach. PloS one, 17(7), e0270933.
Dostal, T., Meisner, J., Munayco, C., García, P. J., Cárcamo, C., Pérez Lu, J. E., ... & Rabinowitz, P. M. (2022). The effect of weather and climate on dengue outbreak risk in Peru, 2000-2018: A time-series analysis. PLoS neglected tropical diseases, 16(6), e0010479.
Fan, P., Ouyang, Z., Nguyen, D. D., Nguyen, T. T. H., Park, H., & Chen, J. (2019). Urbanization, economic development, environmental and social changes in transitional economies: Vietnam after Doimoi. Landscape and urban planning, 187, 145-155.
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes, 5(1), 1-12.
Frake, A.N., Peter, B.G., Walker, E.D. and Messina, J.P. (2020). Leveraging big data for public health: Mapping malaria vector suitability in Malawi with Google Earth Engine. Plos One, 15(8), p.e0235697.
Frank, A. L., Beales, E. R., De Wildt, G., Meza Sanchez, G., & Jones, L. L. (2017). We need people to collaborate together against this disease: A qualitative exploration of perceptions of dengue fever control in caregivers' of children under 5 years, in the Peruvian Amazon. PLoS neglected tropical diseases, 11(9), e0005755.
Friesen, C. E., Seliske, P., & Papadopoulos, A. (2016). Using Principal Component Analysis to Identify Priority Neighbourhoods for Health Services Delivery by Ranking Socioeconomic Status. Online Journal of Public Health Informatics, 8(2), e192. doi:10.5210/ojphi.v8i2.6733
Frontier Science News. (2016) A brief history of neutrinos: from past problems to future challenges. Available at https://blog.frontiersin.org/2017/12/08/dengue-virus-mosquito-frontiers-in-microbiology/. Accessed on Sept. 1, 2022.
GEOSS Information Exchange Data Hub (GEOSS IEDH). (2022). GEOSS Information Exchange Data Hub. Available at https://cloud.csiss.gmu.edu/uddi/sr_Latn/dataset/limites-de-peru/resource/. Accessed on Sept. 1, 2022.
Gonzalez, C. A. G. (2022). DL4DS--Deep Learning for empirical DownScaling. arXiv e-prints, arXiv-2205.
Guagliardo, S.A., Barboza, J.L., Morrison, A.C., Astete, H., Vazquez-Prokopec, G. and Kitron, U. (2014). Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 8(8), p.e3033.
Gubler, D. J. (2011). Dengue, urbanization and globalization: the unholy trinity of the 21st century. Tropical medicine and health, 39(4SUPPLEMENT), S3-S11.
Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12.
Hasan, M. M., Hernández-Yépez, P. J., de los Angeles Rivera-Cabrera, M., Sarkar, A., dos Santos Costa, A. C., & Essar, M. Y. (2022). Concurrent epidemics of dengue and COVID-19 in Peru: Which way forward?. The Lancet Regional Health-Americas, 12, 100277.
Harlan, S. L., Pellow, D. N., Roberts, J. T., Bell, S. E., Holt, W. G., & Nagel, J. (2015). Climate justice and inequality. Climate change and society: Sociological perspectives, 127-163.
Horstick, O., Tozan, Y., & Wilder-Smith, A. (2015). Reviewing dengue: still a neglected tropical disease?. PLoS neglected tropical diseases, 9(4), e0003632.
Horta, M.A., Bruniera, R., Ker, F.T., Catita, C., & Ferreira, A.P. (2014). Temporal relationship between environmental factors and the occurrence of dengue fever. International Journal of Environmental Health Research, 24, 471 - 481.
Instituto del Mar del Peru. (2022). Home page of Instituto del Mar del Peru. Available at https://www.gob.pe/imarpe. Accessed on Sept. 1, 2022.
Instituto Nacional De Estadistica e Informatica (INEI) (National Institute of Statistics and Informatics). (2022). Available at https://www.inei.gob.pe. Accessed on Oct. 1, 2022.
Iwamura, T., Guzman-Holst, A., & Murray, K. A. (2020). Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature communications, 11(1), 1-10.
Janssen, M. A., & Ostrom, E. (2006). Resilience, vulnerability, and adaptation: A cross-cutting theme of the International Human Dimensions Programme on Global Environmental Change. Global environmental change, 16(3), 237-239.
Jeelani, S., Sabesan, S., & Subramanian, S. (2015). Community knowledge, awareness and preventive practices regarding dengue fever in Puducherry–South India. Public health, 129(6), 790-796.
Kreienkamp, F., Paxian, A., Früh, B., Lorenz, P., & Matulla, C. (2019). Evaluation of the empirical–statistical downscaling method EPISODES. Climate dynamics, 52(1), 991-1026.
Kummu, M., Taka, M., & Guillaume, J. H. (2018). Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Scientific data, 5(1), 1-15.
L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. Ieee Access, 5, 7776-7797.
Lalloué, B., Monnez, J.-M., Padilla, C., Kihal, W., Le Meur, N., Zmirou-Navier, D., & Deguen, S. (2013). A statistical procedure to create a neighborhood socioeconomic index for health inequalities analysis. International Journal for Equity in Health, 12(1), 1-11. doi:10.1186/1475-9276-12-21
Lehner, B., Verdin, K. and Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union, 89(10), pp.93-94.
Li, Q., Cao, W., Ren, H., Ji, Z., & Jiang, H. (2018). Spatiotemporal responses of dengue fever transmission to the road network in an urban area. Acta tropica, 183, 8-13.
Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., ... & Chen, X. G. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS neglected tropical diseases, 8(11), e3301.
Liu, J., Hull, V., Batistella, M., DeFries, R., Dietz, T., Fu, F., ... & Zhu, C. (2013). Framing sustainability in a telecoupled world. Ecology and Society, 18(2).
Liyanage, P., Tozan, Y., Overgaard, H. J., Tissera, H. A., & Rocklöv, J. (2022). Effect of El Niño–Southern Oscillation and local weather on Aedes dvector activity from 2010 to 2018 in Kalutara district, Sri Lanka: a two-stage hierarchical analysis. The Lancet Planetary Health, 6(7), e577-e585.
Mala, S., & Jat, M.K. (2019). Implications of meteorological and physiographical parameters on dengue fever occurrences in Delhi. The Science of the total environment, 650 Pt 2, 2267-2283.
Marengo, J.A., Aragão, L.E., Cox, P.M., Betts, R.A., Costa, D., Kaye, N., Smith, L.T., Alves, L.M., & Reis, V.L. (2016). Impacts of climate extremes in Brazil the development of a web platform for understanding long-term sustainability of ecosystems and human health in amazonia (pulse-Brazil). Bulletin of the American Meteorological Society, 97, 1341-1346.
Maurer, E. P. and Hidalgo, H. G., 2008: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrology and Earth System Sciences, 12, 551-563.
Medium.com. (2022). How does our environment facilitate DENGUE Mosquitoes? Available at https://medium.com/@gayathrikadtr/how-does-our-environment-facilitate-for-dengue-mosquitoes-4fd1ebad3a37. Accessed on Oct. 1, 2022.
Metzger, M. J., Leemans, R., & Schröter, D. (2005). A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. International Journal of Applied Earth Observation and Geoinformation, 7(4), 253-267.
Ministry of Health of Peru. (2015). Larvicide is the only product that prevents the spread of the mosquito that transmits dengue. Available at https://www.gob.pe/institucion/minsa/noticias/42963-larvicida-es-unico-producto-que-evita-la-propagacion-del-zancudo-transmisor-del-dengue (in Spanish). Accessed on Aug. 1, 2022.
Mohai, P., Pellow, D., & Roberts, J. T. (2009). Environmental justice. Annual review of environment and resources, 34, 405-430.
Naish, S., Dale, P., Mackenzie, J.S., McBride, J., Mengersen, K.L., & Tong, S. (2014). Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14, 167 - 167.
National Public Radio (NPR). (2021). NPR, 2021. Vaccinators in Peru's Amazon are challenged by religion, rivers and a special tea. Available at https://www.npr.org/sections/goatsandsoda/2021/12/12/1062397183/vaccinators-in-perus-amazon-are-challenged-by-religion-rivers-and-a-special-tea. Accessed on Aug. 30, 2022.
National Oceanic and Atmospheric Administration (NOAA) (2022). Oceanic Niño Index and El Niño of Coastal Index. Available at https://psl.noaa.gov/data/correlation/oni.data. Accessed on Sept. 1, 2022.
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482.
Palomino, M., Solari, L., León, W., Vega, R., Vergaray, M., Cubillas, L., Mosqueda, R. and García, N. (2006). Evaluation of the residual effect of temephos on Aedes aegypti larvae in Lima, Peru (Evaluación del efecto residual del temephos en larvas de Aedes aegypti en Lima, Perú). Rev Peru Med Exp Public Health (Revista Peruana de Medicina Experimental y Salud Pública) 23(3), 158-162. (Available at https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/1042 in Spanish). Accessed on Aug. 20, 2022.
Pekel, J.F., Cottam, A., Gorelick, N. and Belward, A.S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), pp.418-422.
Peru CDC. (2022). Home page of Peru CDC. Available at http://www.dge.gob.pe. Accessed on Sept. 1, 2022.
Qi, X., Wang, Y., Li, Y., Meng, Y., Chen, Q., Ma, J., & Gao, G.F. (2015). The Effects of Socioeconomic and Environmental Factors on the Incidence of Dengue Fever in the Pearl River Delta, China, 2013. PLoS Neglected Tropical Diseases, 9.
Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016(1), 1-16.
Reiter, P. (2001). Climate change and mosquito-borne disease. Environmental health perspectives, 109(suppl 1), 141-161.
Ren, H., Zheng, L., Li, Q., Yuan, W., & Lu, L. (2017). Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014. International Journal of Environmental Research and Public Health, 14.
Rose, N. H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O. B., ... & McBride, C. S. (2020). Climate and urbanization drive mosquito preference for humans. Current Biology, 30(18), 3570-3579.
Sang, S., Gu, S., Bi, P., Yang, W., Yang, Z., Xu, L., Yang, J., Liu, X., Jiang, T., Wu, H., Chu, C.M., & Liu, Q. (2015). Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014. PLoS Neglected Tropical Diseases, 9.
Sang, S., Yin, W., Bi, P., Zhang, H., Wang, C., Liu, X., Chen, B., Yang, W., & Liu, Q. (2014). Predicting Local Dengue Transmission in Guangzhou, China, through the Influence of Imported Cases, Mosquito Density and Climate Variability. PLoS ONE, 9.
Saranya, P., & Asha, P. (2019). Survey on big data analytics in health care. In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 46-51). IEEE.
Schneider, R., Sebastianelli, A., Spiller, D., Wheeler, J., Carmo, R., Nowakowski, A., Herranz, M.G., Kim, D.H., Barlevi, H., Cordero, Z.E.R. and Ullo, S.L. (2020) Climate-based ensemble machine learning model to forecast dengue epidemics. International Conference on Machine Learning (ICML) 2021 Workshop: Tackling Climate Change with Machine Learning. Available at https://www.climatechange.ai/papers/icml2021/10. Accessed on Aug. 1, 2022.
Sim, S., Ramirez, J. L., & Dimopoulos, G. (2012). Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS pathogens, 8(3), e1002631.
Stoddard, S.T., Wearing, H.J., Reiner Jr, R.C., Morrison, A.C., Astete, H., Vilcarromero, S., Alvarez, C., Ramal-Asayag, C., Sihuincha, M., Rocha, C. and Halsey, E.S. (2014). Long-term and seasonal dynamics of dengue in Iquitos, Peru. PLoS Neglected Tropical Diseases, 8(7), p.e3003.
Tabachnick, W. J. (2016). Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses.
Tarigan, M. I., Badiran, M., & Napitupulu, L. H. (2020). Health Film Promotion Media and Motivation on Community Knowledge In Preventing Dengue Fever. International Archives of Medical Sciences and Public Health, 1(1), 37-50.
Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., ... & Ziehn, T. (2021). Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth System Dynamics, 12(1), 253-293.
Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., & Nemani, R. (2022). NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1), 1-6.
Tian, H., Huang, S., Zhou, S., Bi, P., Yang, Z., Li, X., Chen, L., Cazelles, B., Yang, J., Luo, L., Jing, Q., Yuan, W., Pei, Y., Sun, Z., Yue, T., Kwan, M., Liu, Q., Wang, M., Tong, S., Brownstein, J.S., & Xu, B. (2016). Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China. Environmental research, 150, 299-305.
Tsai, P.J., Lin, T.H., Teng, H.J. and Yeh, H.C. (2018). Critical low temperature for the survival of Aedes aegypti in Taiwan. Parasites & Vectors, 11(1), pp.1-14.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., ... & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the national academy of sciences, 100(14), 8074-8079.
United States Environmental Protection Agency (USEPA). (2022). EJ and Supplemental Indexes in EJScreen. Available at https://www.epa.gov/ejscreen/ej-and-supplemental-indexes-ejscreen. Accessed on Oct. 1, 2022.
Verburg, P.H., Chen, Y.Q., and Veldkamp, A. (2000). Spatial explorations of land use change and grain production in China. Agriculture, Ecosystems and Environment 82: 333-354.
Verburg, P.H., Kok, K., Pontius Jr., R.G., and Veldkamp, A. (2006). Modeling Land-Use and Land-Cover Change. In: Lambin, E.F., Geist, H.J. (eds.), Land-Use and Land-Cover Change: Local Processes and Global Impacts. The IGBP Series. Springer-Verlag, Berlin Heidelberg.
Verburg, P.H., Soepboer, W., Limpiada, R., Espaldon, M.V.O., Sharifa, M.A., and Veldkamp, A. (2002). Modelling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management 30: 391-405.
Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: how to use principal components analysis. Health Policy and Planning, 21(6), 459-468. doi:10.1093/heapol/czl029
Wesolowski, A., Qureshi, T., Boni, M. F., Sundsøy, P. R., Johansson, M. A., Rasheed, S. B., ... & Buckee, C. O. (2015). Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences, 112(38), 11887-11892.
Wong, L. P., AbuBakar, S., & Chinna, K. (2014). Community knowledge, health beliefs, practices and experiences related to dengue fever and its association with IgG seropositivity. PLoS neglected tropical diseases, 8(5), e2789.
Wood, A.W., E.P. Maurer, A. Kumar, and D.P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophysical Research-Atmospheres, 107, 4429, https://doi.org/10.1029/2001JD000659.
Wood, A.W., L.R. Leung, V. Sridhar, and D.P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 15, 189-216
World Health Organization (WHO). (2010). Vector control product: Abate 500 EC. Available at https://extranet.who.int/pqweb/vector-control-product/abate-500-ec
World Health Organization (WHO). (2020). Dengue and severe dengue. Available at https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue, accessed on May 18, 2022.
World Mosquito Program (WMP). (2022). Explainer: How climate change is amplifying mosquito-borne diseases. Available at https://www.worldmosquitoprogram.org/en/news-stories/stories/explainer-how-climate-change-amplifying-mosquito-borne-diseases
Yenamandra, S. P., Koo, C., Chiang, S., Lim, H. S. J., Yeo, Z. Y., Ng, L. C., & Hapuarachchi, H. C. (2021). Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Scientific Reports, 11(1), 1-15.
Yue, Y., Liu, Q., Liu, X., Wu, H., & Xu, M. (2021). Comparative analyses on epidemiological characteristics of dengue fever in Guangdong and Yunnan, China, 2004–2018. BMC Public Health, 21.
Zhu, G., Liu, J., Tan, Q., & Shi, B. (2016). Inferring the Spatio-temporal Patterns of Dengue Transmission from Surveillance Data in Guangzhou, China. PLoS Neglected Tropical Diseases, 10.
ZME Science. (2022). Here’s how Skrillex’s music could help fight Zika and dengue fever. Available at https://www.zmescience.com/science/skrill-music-insect-repellant-0423/. Accessed on Oct. 1, 2022
Presentations
Team Members
Briceno, Ruben | COI, MSU | jqchen@msu.edu | |
Chen, Jiquan | COI (MSU PI) |
jqchen@msu.edu | |
Fan, Peilei | PI, TU | Peilei.Fan@tufts.edu | |
Irfan, Furqan | COI, MSU | irfanfur@msu.edu | |
Xia, Qing | Collaborator, MSU | xiaqing@msu.edu | |