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Abstract FLUXNET, the global network of eddy covariance flux towers, provides the largest synthesized
data set of CO2, H2O, and energy fluxes. To achieve the ultimate goal of providing flux information
“everywhere and all of the time,” studies have attempted to address the representativeness issue, i.e.,
whether measurements taken in a set of given locations and measurement periods can be extrapolated to a
space- and time-explicit extent (e.g., terrestrial globe, 1982–2013 climatological baseline). This study focuses
on the temporal representativeness of FLUXNET and tests whether site-specific measurement periods are
sufficient to capture the natural variability of climatological and biological conditions. FLUXNET is unevenly
representative across sites in terms of the measurement lengths and potentials of extrapolation in time.
Similarity of driver conditions among years generally enables the extrapolation of flux information beyond
measurement periods. Yet such extrapolation potentials are further constrained by site-specific variability of
driver conditions. Several driver variables such as air temperature, diurnal temperature range, potential
evapotranspiration, and normalized difference vegetation index had detectable trends and/or breakpoints
within the baseline period, and flux measurements generally covered similar and biased conditions in those
drivers. About 38% and 60% of FLUXNET sites adequately sampled the mean conditions and interannual
variability of all driver conditions, respectively. For long-record sites (≥15 years) the percentages increased to
59% and 69%, respectively. However, the justification of temporal representativeness should not rely solely
on the lengths of measurements. Whenever possible, site-specific consideration (e.g., trend, breakpoint, and
interannual variability in drivers) should be taken into account.

1. Introduction

FLUXNET, the global network of eddy covariance flux towers, has grown rapidly over the last 25 years and
largely enhanced our understanding of carbon, water, and energy cycles in terrestrial ecosystems [Baldocchi,
2014; Papale et al., 2012]. To date, it is estimated that there are more than 900 active and historical tower sites
worldwide and ~7000 site years (~60,000,000 site hours) of data that have been collected. By joining local
towers and regional network teams globally, FLUXNET provides the largest synthesized data set of CO2 (e.g.,
primary production and respiration), water vapor (e.g., evapotranspiration), and energy fluxes (e.g., sensible
and latent heat fluxes). This includes the so-called “La Thuile data set” (initiated in 2007) containing ~1000 site
years of data from 252 sites worldwide [Agarwal et al., 2010; Papale et al., 2012], which has been widely used
(e.g., ~392 papers since 2007 with a topic of “FLUXNET” on Web of Science). To achieve the goal of providing
flux information “everywhere and all of the time” [Baldocchi, 2008], machine-learning techniques (e.g., neural
networks, regression trees, and kernel methods) were adopted to extrapolate the location- and time-
constrained measurements to space- and time-explicit products, such as global long-term maps of CO2, H2O,
and energy fluxes [Beer et al., 2010; Jung et al., 2009, 2011; Papale and Valentini, 2003; Tramontana et al.,
2015, 2016; Xiao et al., 2008; Yang et al., 2007, 2006]. Such gridded and harmonized products provide valuable
information of terrestrial fluxes at the desired spatial and temporal scales, which have been used extensively in
parameterizing, calibrating, and validating other models such as those from satellite-based remote sensing,
land-atmosphere climate models, and global CO2 flask measurements combined with atmospheric inversions
[Anav et al., 2015; Beer et al., 2010; Bonan et al., 2011; Guanter et al., 2014; Jiménez et al., 2011; Kondo et al., 2015].

As the network of towers was never designed to maximize the spatial and temporal coverage, concerns
were often raised in extrapolating flux information from measurement locations and periods to a
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space- and time-explicit extent, i.e., the so-called representativeness issue [Schimel et al., 2015; Sulkava et al.,
2011; Sundareshwar et al., 2007]. Adopting the definition proposed in Nappo et al. [1982], representativeness
illustrates the extent to which a set of (flux) measurements taken in a given space-time domain (e.g., site
locations and measurement periods) reflect the actual (flux) conditions in the different space-time domain
taken on a scale appropriate for a specific application (e.g., terrestrial globe, 30 year climatological baseline).
Over the years, several studies have attempted to evaluate the representativeness of FLUXNET in the context
of such spatial and temporal extrapolations, of which the majority focused on the space domain. First, a few
studies focused on the prediction uncertainties of fluxes by evaluating machine-learningmodel performance
in extrapolation exercises [Jung et al., 2009; Papale et al., 2015]. As such approaches rely on the available data
of fluxes for validation, the evaluation of representativeness was inherently constrained by data availability, in
both space and time. Second, a few studies used proxies of fluxes derived from independent sources in
evaluating network representativeness, such as model outputs from mechanistic models [Carvalhais et al.,
2010; Sulkava et al., 2011], or data based on ground inventories and remote sensing [Schimel et al., 2015].
Proxies enable to conduct evaluation in areas without direct flux measurements. Nonetheless, the use of
proxies is still constrained by the data availability of proxies themselves (especially for those of ground
inventories), and uncertainties in the estimation of proxies may be introduced to the evaluation process.
Most importantly, models used to generate proxies often rely on flux data for model parameterization,
calibration, or validation. Thus, it is disputed whether proxies are truly independent from flux data (i.e., still
constrained by the information provided by flux data) and whether they are suitable for the evaluation of
representativeness of flux measurements [Sulkava et al., 2011]. Last, several studies proposed the evaluation
of network representativeness based on the potential driver variables of fluxes [Hargrove and Hoffman, 2004;
Hargrove et al., 2003; Sulkava et al., 2011; Sundareshwar et al., 2007]. Those studies focused on multidimen-
sional driver characteristics (e.g., climate, soil, and plant characteristics) and evaluated the similarity of driver
conditions between the areas with and without measurements by using multivariate clustering techniques.
In a sense, such approaches avoid using flux data directly but instead evaluate representativeness based on
the extent to which the selected driver conditions in areas with flux measurements reflect the driver condi-
tions in areas without measurements. As driver variables usually have much better data coverage than fluxes,
the driver-based approaches have been proven to be powerful in evaluating network representativeness,
especially in areas where the data or proxies of fluxes were unavailable [Schimel et al., 2007].

By the time of writing, the new data synthesis FLUXNET2015/2017 is being carried out with the number of site
years increasing substantially since the La Thuile data set (fluxnet.fluxdata.org) [Pastorello et al., 2017].
Arguably, the newly established tower sites in the recent decades have largely improved the spatial represen-
tativeness of FLUXNET. For readers interested in spatial representativeness of flux networks, we refer them to
other publications for detailed discussions [Beringer et al., 2016; Hargrove and Hoffman, 2004; Hargrove et al.,
2003; Kumar et al., 2016; Sulkava et al., 2011; Sundareshwar et al., 2007]. Yet new challenges emerge as many
sites are only established after the late 2000s, and thus, the distribution of measurement lengths is highly
skewed across sites. While the early established sites have reached more than 15–20 years of measurements,
the majority (>50%) of sites only operate for 3–5 years or less. Thus, data users often have to make a compro-
mise between spatial coverage (e.g., focusing on a short period with the maximal number of sites) and
temporal coverage (e.g., focusing on a small subset of sites with long records). The objective of this study
is to examine the representativeness of FLUXNET in the context of such uneven measurement lengths across
the network. In other words, could sites with different measurement lengths provide flux information “all of
the time,” such as that was intended to achieve by using machine-learning extrapolation? Specifically, we
focused on the temporal representativeness of each tower site and tested whether the site-specific measure-
ment period was sufficient to capture the natural variability of climatological and biological conditions at a
given site location. We also proposed some guidelines and potential areas of research interests for future
FLUXNET syntheses.

2. Materials and Methods
2.1. Overview

Here we propose an analysis framework to systematically evaluate the temporal representativeness of
FLUXNET by focusing on the driver variables of target interests (e.g., CO2, H2O, latent, and sensible heat
fluxes), similar to previous driver-based studies [Hargrove and Hoffman, 2004; Hargrove et al., 2003; Sulkava
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et al., 2011; Sundareshwar et al., 2007]. By focusing on independent driver data sets, we intend to infer the
temporal representativeness beyond the periods with flux measurements, which were mostly bounded
within 2005–2012. Also, by avoiding using flux data, we intend to expand our analysis works to a larger set
of FLUXNET sites, where a standardized and openly shared flux data set was still not available [Papale
et al., 2012]. As our goal was to provide a generalized overview, we set the period of 1982–2013 as the
long-term baseline (the longest possible) and included as many sites as possible by requiring the least
amount of information from each tower site. The time series of preselected driver variables were obtained
from independent gridded and harmonized data sets for the baseline period at each tower location. A
series of statistical analyses were then applied to test whether the driver conditions (e.g., mean and
variability) in years with flux measurements adequately represented those of the baseline period. In other
words, we tested whether flux measurements (bounded within the measurement periods) had the
possibility to “see” all the driver conditions of the baseline period. There were a few assumptions taken
while conducting these analyses. (1) We assumed that there were no measurement errors and/or data
gaps in flux measurements. That implied, flux information in years with measurements could be properly
retrieved and used for extrapolation in years with no measurements. (2) The flux measurements at each
tower site adequately reflected the area-average flux conditions over a given spatial extent, at which the
area-average driver conditions were properly described by available driver data sets. (3) To provide flux
information in years with no flux measurement, the years with measurements needed to experience
similar driver conditions as those in years without measurements. Practically, these aforementioned
assumptions may not always be valid at all sites. The violation of the assumptions generally reduced the
potential representativeness of flux measurements, and thus, our analyses could be viewed as the
optimistic estimates in the best case scenario. The implications of such assumptions for the interpretation
of representativeness are discussed in section 3.4.

2.2. FLUXNET Registered Tower Sites

A full list of FLUXNET tower sites was compiled from the databases of FLUXNET-ORNL, FLUXNET-Fluxdata,
AmeriFlux, European Fluxes Database, AsiaFlux, ChinaFlux, OzFlux, and U.S.-China Carbon Consortium
(USCCC) (Table S1 in the supporting information). The site list and general site information were acquired,

Figure 1. Map of active and historical FLUXNET tower sites used in the study. The color and size of the circle indicate the lengths of measurements as of December
2015. The solid and dashed lines denote equator, Tropic of Cancer/Capricorn, and the Arctic Circle, respectively. For data sources and details refer to Table S1.
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harmonized, and cross validated among databases. There were 916 sites in total registered across databases
by the time of data query (December 2015), of which 875 sites had the basic general site information required
for our analyses (i.e., site name, country, latitude, longitude, and measurement starting and ending years).
Sites without specified ending years were treated as active. We further screened out sites that only started
after our target period (1982–2013). Finally, 855 sites were retained and used for the following analyses
unless specified otherwise (Figure 1 and Table S1). For easier interpretation, we grouped the sites into
three main regions of South to North America, Africa-Europe, and Oceania-Asia while presenting the results.

2.3. Selected Driver Variables

We selected a series of potential driver variables based on literature survey and data availability (Table 1). The
final list of selected drivers included climatic variables such as air temperature, precipitation, potential evapo-
transpiration, diurnal temperature range, incoming shortwave radiation, and vegetation indices such as
satellite-based normalized difference vegetation index (NDVI). The selection of driver also considered the
following factors: (1) Drivers were used previously in predicting long-term gridded fluxes via machine-
learning techniques [Jung et al., 2009, 2011; Papale et al., 2015; Papale and Valentini, 2003; Tramontana
et al., 2016]. (2) Divers were used previously in evaluating spatial representativeness of flux tower networks
[Hargrove et al., 2003; Sundareshwar et al., 2007]. (3) Drivers were available regarding the required spatial
and temporal coverages (terrestrial globe, 1982–2013). (4) Certain variables were further excluded after
preliminary tests such as plant functional type, topography, soil property, and nutrient content because their
year-to-year variation was assumed negligible or their long-term gridded data were unavailable to the best of
our knowledge.

Table 1. List of Selected Driver Variables

Abbreviation Variable Unit Data Source

Monthly (Time Series Analysis)
tmp Air temperature °C CRU TS 3.22
pre Precipitation mm CRU TS 3.22
dtr Diurnal air temperature range °C CRU TS 3.22
pet Potential evapotranspiration mm CRU TS 3.22
ssrd Incoming shortwave radiation Wm�2 ERA-Interim
ndvi Normalized difference vegetation index Unitless GIMMS NDVI3g

Yearly (Standardized Anomaly, Equal Mean, Equal Variance, and Multivariate Similarity Analyses)
tmp.mn Mean annual air temperature °C CRU TS 3.22
tmp.hqtr Mean air temperature in the warmest quartera °C CRU TS 3.22
tmp.cqtr Mean air temperature in the coolest quartera °C CRU TS 3.22
pre.mn Annual precipitation mm CRU TS 3.22
pre.hqtr Precipitation in the warmest quartera mm CRU TS 3.22
pre.cqtr Precipitation in the coolest quartera mm CRU TS 3.22
pptpet Ratio of annual precipitation to annual potential evapotranspiration Unitless CRU TS 3.22
bioh Potential growing degreeb °C CRU TS 3.22
pet.mn Annual potential evapotranspiration mm CRU TS 3.22
pet.hqtr Potential evapotranspiration in the warmest quartera mm CRU TS 3.22
dtr.mn Mean diurnal air temperature range °C CRU TS 3.22
dtr.hqtr Diurnal air temperature range in the warmest quartera °C CRU TS 3.22
ssrd.mn Mean incoming shortwave radiation Wm�2 ERA-Interim
ssrd.hqtr Incoming shortwave radiation in the warmest quartera Wm�2 ERA-Interim
ndvi.mn Mean annual NDVI Unitless GIMMS NDVI3g
ndvi.hqtr NDVI in the peak-NDVI quartera Unitless GIMMS NDVI3g
ndvi.thwth.f Length of greening periodc Month GIMMS NDVI3g

aThe warmest quarter is defined based on the 32 year mean seasonal variation of air temperature, where the three
consecutive months have the highest mean air temperature. December and January are treated as consecutive months.
Similar definition is also used to identify the coolest quarters and the peak-NDVI and trough-NDVI quarters.

bSum of monthly air temperature when air temperature ≥5°C.
cThe length of greening period is defined as the number of months in each year that monthly NDVI exceeds the

site-specific NDVI threshold. Site-specific NDVI thresholds are defined as one of the following: (1) NDVI in the
trough-NDVI quarter + 0.2 × (NDVI in the peak-NDVI quarter�NDVI in the trough-NDVI quarter) or 0.2 (whichever larger)
for sites showing detectable seasonality in NDVI. (2) 0.2 for sites showing no detectable seasonality in NDVI. An example
is presented in Figure 2b.
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For each tower site, the 32 year time series of the selected drivers were obtained from the gridded data
sources (Table 1). No spatial downscaling was conducted, and the time series from the grid that covered
the tower location were retrieved and used for all following analyses (section 2.1, assumption 2). Most
climatic variables were obtained from the observation-based Climatic Research Unit (CRU) time series (TS)
3.22 data set [Harris and Jones, 2014; Harris et al., 2014] (Table 1), which had a monthly temporal resolution
and a 0.5° spatial resolution. Incoming shortwave radiation was obtained from the ERA-Interim reanalysis
data collection [Dee et al., 2011], which had a 6 h temporal resolution and a 0.75° spatial resolution. We further
integrated the radiation data to a monthly scale. NDVI was obtained from the Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI3g data set [Pinzon and Tucker, 2014]. NDVI3g is the third generation of
GIMMS NDVI derived from the advanced very high resolution radiometer (AVHRR) [Anyamba et al., 2014]
and has a bimonthly temporal resolution and a 0.083° spatial resolution. This latest version of GIMMS NDVI
employs state-of-the-art techniques to remove artifacts in the time series, which are due to differences
among sensors, solar zenith angle, and orbital drift. We used the embedded quality flags to account for
the possibility of false positives from clouds or snow. We further aggregated the bimonthly NDVI to a monthly
scale by using the maximum value composite method [Guay et al., 2014; Holben, 1986]. In the preliminary
tests, we found that such temporal aggregation helped filter the remaining problematic data points that
were not captured by the embedded quality flags [Forkel et al., 2013].

2.4. Statistical and Analysis Framework

Several groups of statistical analyses were carried out to test whether the driver conditions in years with flux
measurements reflected those of the baseline period, including the univariate time series, equal mean, equal
variance, and multivariate similarity analyses (Table 2). The software R was used for all statistical analyses
[R Development Core Team, 2016]. Herein, we treated each year as the best resolved and inseparable unit
in presenting our analyses (n= 32), as the FLUXNET synthesis data set was typically distributed with a
minimum unit of one site year. The significance level was set to 0.05 in all our analyses.

The BFAST (Breaks For Additive Seasonal and Trend) model was adopted to detect trends and breakpoints
(i.e., change in slope of trend) in the monthly time series of six drivers for each tower site (Table 1) [de
Jong et al., 2013; Verbesselt et al., 2010, 2012]. The model was adopted for its capability of detecting trends

Table 2. Schemata for Evaluating the Temporal Representativeness of Flux Measurement Periods

Statistics Quantitative Criterion Description Interpretation

Trend + breakpoint BFAST model, OLS-MOSUM
testa (p< 0.05)

No trend or breakpoint More likely, measurement period
represents the entire baseline period.

Detectable trend Less likely
Detectable breakpoint within the

measurement period
Unknown

Detectable breakpoint outside the
measurement period

Less likely

Standardized anomaly Student’s t test (p< 0.05)b Unevenly distributed within/outside the
measurement period

Less likely

Evenly distributed within/outside the
measurement period

More likely

Equal mean Wilcoxon Mann-Whitney test
(p< 0.05)

Unequal means between the measurement
period and the entire baseline period

Less likely

Equal means between the measurement
period and the entire baseline period

More likely

Equal variance Levene’s test (p< 0.05) Unequal variance between the measurement
period and the entire baseline period

Less likely

Equal variance between the measurement
period and the entire baseline period

More likely

Multivariate similarity Least similar year at 5+, 10+,
and 15+ year sitesc

Low similarity between years with and
without measurements

Less likely

High similarity between years with and
without measurements

More likely

aOLS-MOSUM test: ordinary least squares residual-based moving sum test [Zeileis, 2005].
bStudent’s t test is only conducted for pooled standardized anomalies.
cFor implementation details refer to the main text (section 2.4).
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and breakpoints within time series that possessed periodic nature (Figure 2a). The model fitting was carried
out only on monthly time series to ensure the model robustness [Forkel et al., 2013]. The criterion of
determining whether a breakpoint existed in the time series was based on the tests of ordinary least
squares residual-based moving sum (OLS-MOSUM) [Zeileis, 2005]. The detection of a breakpoint indicated
an abrupt or step change in time series (Figure 2a), which may associate with regime transition of a driver
variable. If a breakpoint is identified outside the period of flux measurements, any inference or prediction
that is tightly associated with the driver variable would be less likely to extrapolate to periods without flux
measurements (Table 2).

Standardized anomaly, equal mean, equal variance, and multivariate similarity analyses were carried out on
yearly aggregated data. Several aggregations such as annual integrals, means of the peak quarter, ampli-
tudes, and periods of seasonal cycles were adopted similar to previous studies (Figure 2b) [Hargrove et al.,
2003; Jung et al., 2009, 2011; Sundareshwar et al., 2007]. Using these aggregations enabled our analyses at
a yearly scale while still preserving within-year features of drivers in specific seasons (e.g., warm, growing
seasons). In total, we kept 17 yearly aggregated divers for following analyses (Table 1).

First, we calculated the standardized anomaly for each yearly aggregated driver by normalizing the time
series with its 32 year mean and standard deviation [Wilks, 2011]. For each tower site, the standardized
anomaly illustrated the relative distribution of driver conditions within and outside the flux measurement
periods (Table 2). We further pooled the standardized anomaly in the flux measurement periods from the
three main regions (Oceania to Asia, Africa to Europe, and North to South America). The Student’s t test
was applied to test if the pooled anomaly was significantly different from zero. The test illustrated whether
the flux measurement periods in each region adequately represented the baseline mean driver conditions.

Second, we adopted the Wilcoxon Mann-Whitney and Levene’s tests to examine the equality of means and
variances for each yearly aggregated variable at each tower site [Hollander et al., 2014; Levene, 1960]. The
Wilcoxon Mann-Whitney test is a nonparametric test for the equality of means between groups. Levene’s test
is a robust test for the equality of variances between groups. Both tests were adopted because they were less
sensitive to departures from normality. The comparison was made only for sites having at least 5 years of flux
measurements (i.e., 536 sites) and between the actual measured years and target baseline (1982–2013). The

Figure 2. An example of (a) BFAST season-trend model fitting and (b) yearly aggregations of NDVI time series from the
US-Ton (Tonzi Ranch) site. The grey lines in Figure 2a show the original monthly NDVI time series. The black, blue, and
red lines denote the seasonality, trend, and breakpoint of the fitted BFASTmodel, respectively. The open circles in Figure 2b
show the original monthly NDVI time series of one example year (2013). The horizontal grey lines indicate the yearly
aggregations including mean NDVI in the peak-NDVI quarter (ndvi.hqtr), annual mean NDVI (ndvi.mn), site-specific NDVI
threshold (ndvi.thw), and mean NDVI in the trough-NDVI quarter (ndvi.cqtr). The vertical dash-dotted lines show the
start and end of the identified greening period (ndvi.thwth.f). Please note that ndvi.cqtr and ndvi.thw are not used directly
in the analyses, so they are not listed in Table 1. Yet they are used to determine the greening periods, so they are kept here
in the figure.
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tests illustrated whether the driver conditions in years with flux measurements adequately represented the
baseline mean conditions and interannual variability (Table 2).

Last, we calculated multivariate similarity metrics among each pair of the 32 years (1982–2013) at each site
based on the multidimensional distances of 17 yearly aggregated drivers (Table 1). Both Manhattan and
Euclidean distances were calculated in the preliminary tests, and we found that the choice of distancemetrics
had only minor effects on the interpretation of the final results. Thus, only the results using the Manhattan
distances were presented here. For each tower site, the similarity was normalized to the full range of
0–100% such that the pair of years with the largest distance had zero similarity and the pairs of exact match
(e.g., self-comparison) had 100% similarity. For each year without flux measurements, we then derived its
maximum similarity to any of the years with flux measurements based on the cross-year similarity metrics.
The maximum similarity represented how similar the years without flux measurements could be to any year
with flux measurements in the multidimensional driver space and, thus, how likely the years not measured
could be represented by the measured years (Table 2). To help interpret the similarity results across sites,
we set a series of criteria based on the maximum similarity of the least similar year at each site and averaged
across sites with 5+, 10+, and 15+ years of flux measurements. Such criteria express the extent to which the
measurement period at each site could potentially represent when judging by the least similar years of the
5+, 10+, and 15+ year sites.

3. Results and Discussion

In the following analyses we showed the extent to which the selected driver conditions in years with flux
measurements reflected those in years without flux measurements. We first focused on the time series
characteristics (e.g., trend, breakpoint, and standardized anomaly) of each driver variable (section 3.1) and
tested whether site-specific measurement periods were long enough to capture the baseline climatological
and biological conditions (e.g., means and variance) at each tower site (section 3.2). We further examined the
multivariate similarity of selected drivers and evaluated whether site-specific measurement periods were
sufficient to adequately sample the multidimensional driver conditions at each tower site (section 3.3).
We finally discussed the implications of our results and provided suggestions for future applications
(section 3.4).

3.1. Univariate Time Series Analysis

Several drivers such as air temperature, diurnal temperature range, potential evapotranspiration, and NDVI
had detectable trends and/or breakpoints within the baseline period. As the majority of tower sites started
measurements in the late 2000s and operated in consecutive years, flux measurement periods tended to
cover similar and biased driver conditions.

Air temperature showed increasing trends over the 32 year period across the majority of regions and sites
(Figures 3h–3j). As most tower sites started in the late 2000s, the measured periods thus experienced
generally above-average air temperature (Figures 3d–3g and S1a–S1f in the supporting information and
Table 3). Several very warm years were identified in the periods with abundant site measurements, such as
the summer of 2011 and the year of 2012 in North America, the summer of 2003 and the year of 2011 in
Europe, and the summer of 2013 and the year of 2007 in Asia. On the other hand, we identified a few cool
years with abundant site measurements such as the year of 2009 in North America, the winters of 2005
and 2010 in Europe, and the winters of 2011 and 2012 in Asia (Figures 3e–3g and S1a–S1f).

Precipitation showed no consistent trends across all regions and sites (Figures 4h–4j). Flux-measured periods
tended to better sample the year-to-year variation in precipitation than air temperature (Figures 4d–4g and
Table 3). There were regions and years that had abundant site measurements and experienced very high
precipitation such as the summers of 2007 and 2012 in Europe, the year of 2010 in South Europe and
Africa, the winters of 2007 and 2008 for 35°N–45°N in North America, and the years of 2010–2011 in
Australia (Figures 4e–4g and S2a–S2f). On the other hand, very low precipitation was observed in the year
of 2003 in Europe; the years of 2001, 2002, and 2012 in midlatitude North America; and the year of 2013
for 40°N–60°N in Asia.

Potential evapotranspiration, incoming shortwave radiation, and diurnal temperature range showed
less consistent trends across all regions (Figures S3–S5 and Table 3). Yet there were local patterns of trends
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Figure 3. (a–g) Standardized anomaly and (h–j) slope of trend of air temperature from 1982 to 2013 at FLUXNET tower sites. In total, 855 sites are presented here. The
figures are arranged as follows. The tower sites are grouped into the threemain regions: South to North America (Figures 3a, 3e, and 3h), Africa to Europe (Figures 3b,
3f, and 3i), and Oceania to Asia (Figures 3c, 3g, and 3j). Within each region, the sites are ordered vertically by latitude and then equally spaced ranging from the
most southern (bottom) to the most northern one (top). The corresponding latitudes and site index were labeled on the left and right y axes, respectively. For readers
interested in identifying the sites in each panel, a full list of the site index is provided in Table S1 (site index A). Figures 3a–3c show the full record (1982–2013)
of standardized anomaly, while Figures 3e–3g only show periods with tower measurements (i.e., the white color denotes no measurement). Each thin colored
rectangle in Figures 3a–3c and 3e–3g denotes the standardized anomaly from one site year, and the colors denote the values of standardized anomaly. For a block of
areas with similar colors (e.g., 2012 at midlatitude North America), it implies that there are a number of site years in adjacent latitudes that experience the similar
standardized anomaly. Standardized anomaly is calculated based on the 32 year mean and standard deviation of air temperature at each tower site. Figure 3d shows
the pooled standardized anomalies for the years with flux measurements. The data are grouped by three main regions and three main periods (i.e., pre-2003,
2004–2008, and 2009–2013). The open triangles, circles, and squares denote the medians of the pooled standardized anomalies in regions of Oceania to Asia, Africa
to Europe, and North to South America, while the thick and thin lines denote the 25%–75% and 2.5%–97.5% quantile intervals, respectively. The closed circles in
Figures 3a–3c and 3e–3g indicate the time and sites with identified breakpoints in the time series. Figures 3h–3j show the slopes of trends. For a site with an
identified breakpoint, only trend in the relatively longer time period is shown.
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appearing in certain regions, such as increasing potential evapotranspiration in Europe and Asia
(Figures S3h–S3j) and increasing incoming shortwave radiation in North America (Figure S4h). Extreme
years identified in air temperature or precipitation were also highlighted as extremes in potential
evapotranspiration, incoming shortwave radiation, and diurnal temperature range. That included the warm
and drought year of 2003 in Europe (Figures S3f, S4f, and S5f) and 2012 in North America (Figures S3e,
S4e, and S5e). Noticeably, breakpoints within the time series of diurnal temperature range were detected
at ~176 sites, of which the majority (93%) occurred before the periods with flux measurements
(Figures S5a–S5c and S5e–S5g).

Most of the aforementioned region years with climatic anomalies and extremes were documented in
previous studies, such as large-scale droughts (e.g., 2003 Europe, 2003–2004 western U.S., 2011 southern
U.S., and 2012 Midwest U.S.) [Ciais et al., 2005; Coumou and Rahmstorf, 2012; Mallya et al., 2013; Parazoo
et al., 2015; Schwalm et al., 2012; Wolf et al., 2016], heat waves (e.g., 2003 summer Europe and 2012 North
America) [Ault et al., 2013; Ciais et al., 2005; Karl et al., 2012; Wuebbles et al., 2014], and high precipitation
causing flooding (e.g., 2010–2011 Australia and 2007 summer western Europe) [Bastos et al., 2013; Coumou
and Rahmstorf, 2012; Haverd et al., 2013]. To the best of our knowledge, only a few of those extreme events
have been studied extensively for their effects on CO2 and energy fluxes across sites and regions [e.g., Bastos
et al., 2013; Chu et al., 2016; Ciais et al., 2005; Schwalm et al., 2012; Wolf et al., 2013, 2016; Zscheischler et al.,
2014]. These “hot spots” (region years) of climate extremes pointed out potential areas of future region-wide
syntheses by using the new FLUXNET data set.

NDVI showed increasing trends in a large portion of sites and regions despite site-to-site variation (Figure 5).
The widespread greening trends agreed with reports in previous studies, suggesting that the majority of sites
were experiencing increased vegetation dynamics, possibly driven by long-term climate changes and
anthropogenic influences (e.g., management and recovery from disturbance) [de Jong et al., 2012, 2013;
Neigh et al., 2008; Nemani et al., 2003; Zhu et al., 2016]. Very green years with high NDVI were identifiedmostly
in the last few years (2009–2013) corresponding to those with warmer air temperature and higher potential
growing degrees (Figures 5d–5g and S6g–S6i and Table 3). The green years were generally more associated
with higher NDVI in the peak quarter than longer greening periods (Figures S6a–S6f and Table 3). Yet as our
analyses were conducted based onmonthly time series, potential changes in the lengths of greening periods
(e.g., days to weeks) may not be always distinguished.

Table 3. Means of the Pooled Standardized Anomalies (±SD) of Selected Drivers From Flux Measurement Periodsa

Selected Diver

Oceania to Asia Africa to Europe North to South America

Pre-2003 2004–2008 2009–2013 Pre-2003 2004–2008 2009–2013 Pre-2003 2004–2008 2009–2013

tmp.mn 0.26 0.54 0.14 0.46 0.48 0.26 0.17 0.33 0.47
tmp.hqtr 0.15 0.26 0.48 0.54 0.25 0.41 0.13 0.20 0.52
tmp.cqtr 0.22 0.15 �0.14 0.21 0.34 �0.45 0.32 0.06 0.09
dtr.mn ns 0.12 �0.11 0.25 0.14 0.18 ns �0.19 �0.14
dtr.hqtr ns ns ns ns 0.27 0.21 ns ns ns
bioh 0.26 0.47 0.34 0.50 0.40 0.46 ns 0.30 0.54
pre.mn ns ns 0.24 ns ns 0.17 �0.20 ns ns
pre.hqtr ns �0.08 ns ns 0.21 0.21 �0.12 ns ns
pre.cqtr ns ns 0.10 ns ns 0.14 �0.11 0.11 ns
pptpet ns �0.20 0.12 ns ns ns �0.13 ns �0.10
pet.mn 0.13 0.48 0.37 0.24 0.16 0.41 �0.12 0.07 0.33
pet.hqtr ns 0.26 0.45 0.14 0.18 0.35 ns ns 0.20
ssrd.mn �0.26 0.38 0.10 0.24 0.12 �0.17 0.31 0.27 0.29
ssrd.hqtr �0.22 0.22 ns 0.16 0.20 �0.26 0.26 0.28 0.10
ndvi.mn 0.19 ns 0.22 0.15 0.34 0.30 ns ns 0.13
ndvi.hqtr ns ns 0.32 0.13 ns 0.60 �0.13 ns 0.53
ndvi.thwth.f 0.16 0.09 ns ns 0.29 ns ns 0.07 �0.12

aFor better presentation, the means of pooled standardized anomalies are omitted if they are not significantly different from zero (ns: p ≥ 0.05). The test
illustrates whether the selected driver in the flux measurement periods in each region adequately represents the baseline mean driver conditions (i.e., zero). If
the pooled standardized anomaly is significantly different from zero, then it expresses that the flux measurement periods experience biased driver conditions
(i.e., higher or lower than baseline). The data are grouped by threemain regions (Oceania to Asia, Africa to Europe, and North to South America) and three selected
periods (pre-2003, 2004–2008, and 2009–2013).
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Breakpoints in NDVI time series were detected in ~175 sites (21%) across the network. There were certain
periods and regions where breakpoints were mostly identified, such as the years of 2008–2010 in North
America, 1986–1989 in Europe, 1994–1995 in Asia, and 2002–2010 in Oceania (Figures 5a–5c). Some of these
region-wide breakpoints were reported in earlier studies [de Jong et al., 2012, 2013; Parazoo et al., 2015],

Figure 4. (a–g) Standardized anomaly and (h–j) slope of trend of precipitation from 1982 to 2013 at FLUXNET tower sites. In total, 855 sites are presented here. The
tower sites are grouped into the three main regions: South to North America (Figures 4a, 4e, and 4h), Africa to Europe (Figures 4b, 4f, and 4i), and Oceania to
Asia (Figures 4c, 4g, and 4j). Within each region, the sites are ordered vertically by latitude and then equally spaced ranging from the most southern (bottom) to the
most northern one (top). The corresponding latitudes and site index were labeled on the left and right y axes, respectively. For readers interested in identifying
the sites in each panel, a full list of the site index is provided in Table S1 (site index A). Figures 4a–4c show the full record (1982–2013) of standardized anomaly, while
Figures 4e–4g only show periods with tower measurements (i.e., the white color denotes no measurement). Figure 4d shows the pooled standardized anomalies
for the years with flux measurements. The data are grouped by three main regions and three main periods (pre-2003, 2004–2008, and 2009–2013). The open
triangles, circles, and squares denote the medians of the pooled standardized anomalies in Oceania to Asia, Africa to Europe, and North to South America, while the
thick and thin lines denote the 25%–75% and 2.5%–97.5% quantile intervals, respectively. The figure is organized similar to Figure 3.
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where they were claimed to be associated with large-scale natural influences such as strong El Niño/La Niña,
climate extremes. It is beyond our current scope to interpret the driving factors of these greening/browning
trends and breakpoints. Nonetheless, the abundant site coverage in 2008–2010 in North America pointed out
a potential area for future syntheses, where the focus could be on validating the breakpoints by using

Figure 5. (a–g) Standardized anomaly and (h–j) slope of trend of normalized difference vegetation index (NDVI) from 1982 to 2013 at FLUXNET tower sites. In total,
855 sites are presented here. The tower sites are grouped into the threemain regions: South to North America (Figures 5a, 5e, and 5h), Africa to Europe (Figures 5b, 5f,
and 5i), and Oceania to Asia (Figures 5c, 5g, and 5j). Within each region, the sites are ordered vertically by latitude and then equally spaced ranging from the
most southern (bottom) to the most northern one (top). The corresponding latitudes and site index were labeled on the left and right y axes, respectively. For readers
interested in identifying the sites in each panel, a full list of the site index is provided in Table S1 (site index A). Figures 5a–5c show the full record (1982–2013) of
standardized anomaly, while Figures 5e–5g only show periods with towermeasurements (i.e., the white color denotes nomeasurement). Figure 5d shows the pooled
standardized anomalies for the years with flux measurements. The data are grouped by three main regions and three main periods (pre-2003, 2004–2008, and
2009–2013). The open triangles, circles, and squares denote the medians of the pooled standardized anomalies in Oceania to Asia, Africa to Europe, and North to
South America, while the thick and thin lines denote the 25%–75% and 2.5%–97.5% quantile intervals, respectively. The figure is organized similar to Figure 3.
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alternative remote sensing products with a finer spatial/temporal/spectral resolution (e.g., Moderate
Resolution Imaging Spectroradiometer, Landsat, and Hyperion) [e.g., Guay et al., 2014] or testing the
robustness of models in extrapolating inferences or predictions across these breakpoints.

3.2. Mean Conditions and Interannual Variability of Selected Drivers

About 38% of FLUXNET sites (≥5 years only) adequately sampled the mean conditions of all selected
driver variables, while ~60% of sites adequately sampled the interannual variability of all selected
driver variables (Figure 6). The percentages of representative sites increased slightly to ~40% (mean condi-
tion) and ~65% (interannual variability) when counting only sites with 10+ years of measurements
(Figures 6e–6g). Surprisingly, about 41% and 31% and of the long-record sites (≥15 years) still underrepre-
sented the mean conditions and interannual variability in at least one of the driver variables. Air
temperature, diurnal temperature range, and potential evapotranspiration were the variables mostly under-
represented by the measurement periods in terms of both their mean conditions and interannual variabil-
ity, while NDVI was underrepresented mostly in terms of its mean conditions (Figure 6a). To a large extent,
such underrepresented patterns could be attributed to the aforementioned trends and/or breakpoints
existing in the time series of driver variables. As most tower sites operated in consecutive years, the
measurement periods tended to sample similar and mostly higher-than-average conditions in these under-
represented driver variables. From a sampling perspective, it was crucial whether the measurement periods
were able to see a few exceptional years with below-average driver conditions (e.g., cool years in
Figures 3e–3g).

Similarly, the occurrence of breakpoints could also bias the mean conditions and interannual variability
observed in the measurement periods. For driver variables where breakpoints occurred mostly
before the measurement periods (e.g., diurnal temperature range), the measured years might not
experience some of the far-end but crucial driver conditions (Figure S5). Thus, a substantial portion of sites
underrepresented either mean conditions (22%) or interannual variability (16%) of diurnal temperature
range (Figure 6a). On the other hand, NDVI had breakpoints occurring both within (e.g., 2008–2010 in
North America) and before the measurement periods (e.g., 1986–1989 in Europe and 1994–1995 in Asia).
NDVI tended to be less biased in areas where the breakpoints occurred within the measurement periods
(Figures 6b–6g). Overall, FLUXNET still undersampled driver conditions in the early years of the baseline
period, especially the mean conditions. Such undersampling was especially critical for variables that
possessed significant trends and/or had breakpoints outside the measurement periods. Most underrepre-
sented sites were located in the 30°N–40°N regions of North America and Asia and the tropical regions
in South America (Figures 6b–6d).

3.3. Multivariate Similarity of Driver Conditions

FLUXNET is unevenly representative in terms of actual measurement lengths and also the extrapolation
potentials in the time domain at each tower site. Our analyses suggest that at least 7–10 years of measure-
ments are required to adequately sample the baseline multivariate driver conditions at most tower sites
(Figure 7). Adopting the criteria of the maximum similarity of the least similar years from sites with 15+ years
of measurements (Figure 7, leftmost dashed lines), sites with 7+ years of measurements generally had
above-criteria similarity in most of the years without measurements (i.e., areas to the left of dashed lines).
That means, by combining the years with flux measurements and years without measurements but having
above-criteria similarity, sites with 7+ years of measurements generally represented driver conditions in
around 28–30 years of the baseline, as sufficiently as those long-record sites. On the other hand, sites that
had shorter measurement periods tended to have lower similarity in most of the years without flux measure-
ments. Also, we found high site-to-site variation in the similarity metrics. Certain sites with 4–5 years of
measurements had high similarity in up to ~20 of the years without flux measurements. Such similarity levels
were comparable to some long-record sites (Figure 7). The site-to-site variation reflected partly the highly
variable nature of interannual variability in the driver conditions across sites (i.e., some sites may experience
higher interannual variability in the driver conditions than others). Additionally, it revealed the importance of
sampling randomness (i.e., driver conditions in the years actually sampled) in determining the measurement
representativeness. Thus, the justification of temporal representativeness should not rely solely on the
lengths of measurements. Site-specific considerations (e.g., trend, breakpoint, and interannual variability in
driver variables) should be taken whenever possible.
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Figure 6. Comparison of mean and variance of selected drivers between the years with flux measurements and baseline period (1982–2013) at FLUXNET tower sites.
The figures are arranged as follows. (a) The summed percentages of sites with unequal means and/or variance for each driver. The tower sites are grouped into the
three main regions: (b and e) South to North America, (c and f) Africa to Europe, and (d and g) Oceania to Asia. In Figures 6b–6d, the sites are ordered vertically by
latitude and then equally spaced ranging from themost southern (bottom) to the most northern one (top). In Figures 6e–6g, the sites are ordered vertically by length
of tower measurements and then equally spaced ranging from the shortest (bottom) to the longest one (top). For readers interested in identifying the sites in each
panel, a full list of the site index is provided in Table S1 (site indexes B and C). A list of driver abbreviations (x axis) can be found in Table 1. Each thin colored rectangle
in Figures 6b–6g denotes the test results (i.e., unequal mean and/or variance) from one selected driver at one site. The brown colors indicate sites and drivers that
have both unequal means and variance (p< 0.05) between themeasured years and long-term baseline. The green and blue colors indicate sites and drivers that have
unequal means and unequal variance, respectively. Sites with less than 5 years of measurements are not analyzed, and in total, 536 sites are presented here.
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3.4. Applications and Implications

Our study provided an initial exploratory analysis on the representativeness of FLUXNET in the time domain
(esp., year-to-year variation). Despite the importance of temporal representativeness, this subject was less
addressed in earlier studies because of the initial focus on maximizing the spatial representativeness of flux
tower networks [Hargrove et al., 2003; Papale et al., 2015; Sulkava et al., 2011; Sundareshwar et al., 2007].

Figure 7. Multivariate similarity metrics between the years with and without flux measurements at FLUXNET tower sites.
The tower sites are grouped into the three main regions: (a) South to North America, (b) Africa to Europe, and
(c) Oceania to Asia. Within each region, the sites are ordered vertically by length of tower measurements and then equally
spaced ranging from the shortest (bottom) to the longest one (top). The corresponding length of measurements and site
index were labeled on the left and right y axes, respectively. For readers interested in identifying the sites in each panel, a
full list of the site index is provided in Table S1 (site index D). At each site, similarity is calculated from the multivariate
analysis of drivers across years. Each thin colored rectangle denotes the similarity from one site year. For each year without
flux measurements, the maximum similarity is derived based on its cross-year similarity to any of the years with flux
measurements. The years are ordered based on the maximum similarity and displayed subsequently (x axis) starting from
the years with actual measurements (left, dark brown color (Obs)) and the years without flux measurements but most
similar (red color) to the years least similar (right, blue color). The dashed lines show the smoothing contours at which the
similarity is equivalent to the criteria defined by the averages of maximum similarity in the least similar year from sites
with 5+, 10+, and 15+ years of measurements. The areas to the left of the dashed lines imply the number of site years that
are adequately represented by the flux measurement periods.
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Previously, only a small number of sites had sufficiently long data (e.g., 10+ years), which further limited the
feasibility of conducting such analyses. A few available modeling studies showed that the uncertainties in
extrapolation were usually lower in time (e.g., among years) than in space (e.g., among sites) [Jung et al.,
2011; Papale et al., 2015]. Our analyses emphasize the potentials of temporal extrapolation for relatively short
and consecutive years, also because driver conditions tend to be similar across consecutive years [Papale
et al., 2015]. Yet we argue that extra caution should be taken on how well extrapolation works further back
in time (e.g., 1980s). As we point out earlier, most of these modeling studies rely on the available data of
fluxes for validation. Thus, the evaluation of extrapolation potentials is inherently constrained by data
availability in time. Given that the fluxmeasurements did not experience the constellations of drivers in those
earlier years, an information transfer from spatial or seasonal variability must occur, which typically assumes
that the underlying functional relationship between drivers and responses remains stationary. In addition,
the secular trend in CO2 concentration that may not be fully sampled by FLUXNET measurements certainly
poses extra uncertainties on model extrapolation. Thus, we argue that subtle changes such as trends
identified with machine-learning model extrapolation should be treated with caution.

Further research is needed to examine the spatiotemporal interchangeability in model extrapolation. Most
previous machine-learning upscaling studies assumed certain interchangeability between spatial and
temporal extrapolations [Beer et al., 2010; Jung et al., 2011; Papale et al., 2015]. For example, model training
was often carried out by pooling data from multiple sites and years of similar ecosystem types (e.g., climate
and plant functional groups). In a sense, the cross-site difference in the driver conditions provides additional
information that enables model extrapolation to years with different and unobserved responses (e.g., a cool
and unseen year at a typically warm site can be predicted by using the data/model from a typically cool site
with otherwise similar state-space combinations). Such assumption seemed inevitable in earlier studies
because only a few sites had long-enough measurements to allow machine-learning approaches to sample
all possible driver conditions at a given site. Recently, a few studies attempted to test such assumption of
interchangeability [e.g., Biederman et al., 2016]. It is beyond our scope to justify such interchangeability.
However, we stress that different types of model are likely to have different capabilities in extracting the
information from data and, thus, enabling the model extrapolation. To a large extent, the wide spectrum
of model structures and selected drivers in previous studies has implicated the challenges and uncertainties
lying within the spatiotemporal extrapolation [e.g., Beer et al., 2010; Jung et al., 2009, 2011; Papale and
Valentini, 2003; Tramontana et al., 2015, 2016; Xiao et al., 2008; Yang et al., 2007, 2006]. We urge future studies
to target this topic, especially whenmore sites and longer records of data become available. In sum, we admit
that our analysis framework may be adjusted depending on the extent to which the information of cross-site
differences could be used in replacement of that of cross-year differences. In that case, one may consider to
revise our current evaluation framework and to carry out the analyses on pooled data frommultiple sites and
years of similar ecosystem types.

Our analyses were confined by data availability of gridded drivers, which may not be comprehensive in all
possible aspects. We advocate that future syntheses could use our findings as a primer and tailor their
evaluation frameworks accordingly based on specific research questions. Certain limitations and implications
of our study are discussed as follows.

First, the selection of baseline periods largely depends on the scope of research and also the availability of
potential drivers. While we confine the current analysis within the last few decades where remote sensing
data are available, one could certainly extend the baseline further to earlier periods (e.g., 1900s and 1950s)
if only climatological drivers are considered or other alternative data sources of vegetation or soil properties
become available. Similarly, the evaluation could be carried out to future periods (e.g., 2020s and 2050s) if the
projection of future climatological conditions is available (e.g., from Coupled Model Intercomparison Project
Phase 5). We also emphasize that the evaluation of temporal representativeness needs to be interpreted in
the context of target baseline. Several drivers have showed substantial trends in our 32 year period. If one
extends the target baseline to an even longer period (e.g., 100 years), then it is possible that the changes
of driver conditions may exceed the ranges of interannual variability observed by the flux measurement
periods (at least in certain times and regions).

Second, the robustness and uncertainties of model extrapolation largely depend on the selected modeling
approaches, explanatory variables, and also the interested fluxes [Papale et al., 2015]. Thus, the selection of
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driver variables and their relative weights (assumed equal and independent in the study) may vary among
studies and models [Sulkava et al., 2011; Tramontana et al., 2016]. Our current analyses were not tailored to
target one specific type of fluxes, but the selection of drivers based on previous studies implicates that our
conclusions should hold, in general, for CO2, water vapor, and energy fluxes. A few studies proposed the
use of joint products of multiple drivers as model predictors (e.g., radiation × vegetation index and soil water
availability) [Jung et al., 2011; Tramontana et al., 2016], which may be introduced when necessary. Similarly, if
one would extend the evaluation to other fluxes (e.g., methane fluxes), then other currently unaccounted
potential drivers may need to be considered (e.g., water table and salinity) [e.g., Ouyang et al., 2014; Zhang
et al., 2015].

Third, there are potential uncertainties in our analyses due to the mismatch of source areas between the flux
towers and gridded drivers (i.e., assumption 2 in section 2.1). While we were aware and cautious about such
mismatch, it was challenging to eliminate the uncertainties because both the network-wise tower footprint
information and fine-resolution grid data that covered our target baseline were still unavailable. Chen et al.
[2011] conducted a cross-site evaluation on the spatial representativeness of 12 Canadian flux tower sites
and assessed the potential bias of flux footprints in representing the surrounding areas (e.g., in terms of
replicating NDVI). They found that most of the tower sites well represented the surrounding ecosystems
up to an area of ~10 km2. Even in a few worst cases, the bias of NDVI between tower footprints and
surrounding areas (e.g., 3 km radius) was still within ±10%. In a recent upscaling study, Xu et al. [2017] showed
that the tower footprint bias may lead to up to ±27% of difference in the expected mean fluxes when
upscaling tower observation to a 20 × 20 km2 target grid. The magnitudes of footprint bias could vary from
site to site and largely depend on the variability of flux footprints and also the surface heterogeneity in the
surrounding areas. Vuichard and Papale [2015] conducted an extensive test across 250 FLUXNET tower sites
and tested the robustness of downscaling meteorological variables (e.g., air temperature, incoming
shortwave radiation, and precipitation) from gridded ERA-Interim reanalysis data to the site level. In their
study, they adopted linear regression for downscaling and argued that such linear relation was generally
sufficient for most tower sites. Yet they also stressed that caution need to be taken for sites that in the moun-
tain or coastal areas, where the gridded data may vary the most from tower measurements. In sum, we argue
that a certain portion of the potential bias from the mismatch in source areas should be relatively constant in
time (i.e., systematic bias). Such systematic bias would have only minor effects on our results, as most of the
analyses were focused on the variability of time series at each site (i.e., eliminating the potentially biased
mean). However, extra caution should be exercised for sites with heterogeneous surrounding areas and/or
relatively varying flux footprints. In those cases, a more sophisticated upscaling/downscaling approach
[e.g., Xu et al., 2017] may be needed to properly evaluate the representativeness of tower footprints.

Fourth, crucial but currently unavailable driver variables such as CO2 concentration, disturbance, land use
history, and management practice should be included when possible [Jung et al., 2011; Papale et al., 2015].
Probably, the time series of GIMMS NDVI may have provided a portion of information to the currently missing
variables of disturbance and land use history (e.g., breakpoints and anomalously high/low NDVI). Several
studies showed that remote sensing products along with time series-based methods (e.g., BFAST) could be
used to detect disturbances [e.g., Forkel et al., 2013; Verbesselt et al., 2010, 2012]. Future syntheses should
explore the potentials of utilizing other remote sensing products (e.g., those with a finer spatial, temporal,
or spectral resolution) in deriving the missing but important information.

4. Conclusions

The global network FLUXNET is unevenly representative in terms of measurement lengths and, thus, flux
information possessed by flux data collected at each tower site. Extra caution should be exercised when
attempting to draw inference or make prediction beyond the extent of data coverage. In general, the
similarity of driver conditions among years enables the extrapolation of flux information beyond the physi-
cally limited measurement periods. By combining years with flux measurements and years without measure-
ments but having similar driver conditions, most decadal sites have shown to adequately represent the driver
conditions in most years of the baseline period 1982–2013. To a large extent, the capability of extrapolation
is determined by the lengths of actual measurements, i.e., the longer, the more representative. Yet we argue
that the justification of temporal representativeness should not rely solely on the lengths of measurements,
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as our analyses showed substantial variation across sites, regions, and also the drivers selected. There is no
single universal criterion (e.g., number of years) for determining the temporal representativeness. Site- or
region-specific temporal characteristics in the driver conditions such as interannual variability, trends,
and breakpoints often pose additional effects that could dampen or enhance the representativeness of
measured periods. Thus, we suggest to perform initial tests on the temporal representativeness of study
sites before conducting cross-site syntheses, especially for sites having only short measurement periods
(e.g., <5–7 years).

We also strongly advocate continuing the data sharing, standardization, and harmonization in an open and
timely manner within FLUXNET. This global network has grown rapidly since the La Thuile synthesis in 2007.
However, the fraction of sites sharing data did not grow accordingly. By the time of writing, it is estimated
that less than ~50% of registered sites and ~35% of collected data (i.e., site years) will participate in the
ongoing FLUXNET2015/2017 data synthesis. We have emphasized the potentials and challenges of
FLUXNET in providing flux information all of the time, and this goal can be further approached with collabora-
tions among the teams of local towers, regional, and global networks.
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