LiDAR: Setup

• Link to download LAStools:

http://www.cs.unc.edu/~isenburg/lastools/download/LAStools.zip

 In ArcMap open the ArcToolbox window, and add the LAStools toolbox

LiDAR: import data in ArcMap

- Create a new LAS dataset (catalog window)
- Double click on the created Las dataset
- On the "LAS files" tab click on "add files" and add "las_1.las"
- Look at the point spacing
- Point density = 1/(Point spacing)^2
- On the "Statistics" tab click on "Calculate"

LiDAR: Visualize data

- On the TOC right click on the LAS dataset and select proprieties
- On "Symbology" tab click on "Add..." on the right and add the "LAS attribute with unique symbol" render. This will allow to categorize each point on the base of various attributes (class, return number, ecc)

- Due to numerous reasons (multipath reflection, moving objects and animals, snow, rain, dust etc.)
- Are present in the data Very often
- Removing outliers is essential to produce surface models (e.g. Canopy Height Model)

Step 1.

- Open lascanopy
- Use the .las file as input
- Set the step to 2
- Select "max"
- Insert the output location
- The tool will crate a raster in which each cell has the value of the highest LiDAR point present (l1_max.tif)

C:\vg\OneDrive\progetti\01_paper_conference_ecc\03_Presentazioni\2 step height cutoff 1,37 products and percentiles (optional) min min max avg std ske kur cov	input file			step
step	C:\vg\OneDrive\progetti\01_paper_conference_ecc\03_Presentazioni\2			-
a into a DEM. For a 1 meter beight cutoff 1,37 products and percentiles (optional) into a DEM. For a 1 meter min into a 5 meter DEM the wax into a second be 5, and for a 25 centimeter DEM the value should be 0.25. into a second be 0.25.	sten			The granularity with which
height cutoff		2		the LiDAR data is gridded
1,37 products and percentiles (optional) min ✓ max avg std ske kur cov	height cutoff			DEM the value should be 1
products and percentiles (optional) min ✓ max avg std ske kur cov		1,37		for a 5 meter DEM the
min ▲ 25 centimeter DEM the value should be 0.25. avg ■ ■ std ■ ■ kur □ cov	products and percentiles (optional)			value should be 5, and for a
✓ max ■ value should be 0.25. avg ■ std ■ ske ■ kur ■ cov ■	i min			25 centimeter DEM the
 avg std ske kur cov 	V max			value should be 0.25.
std ske kur cov	avg avg	=	=	
ske kur	🔲 std			
cov	🔲 ske			
Cov	kur 📃 kur			
	Cov			

Step 2.

- Apply a high pass filter (Spatial Analyst Tools\Neighborhood \Filter) to the raster just created
- Through histogram stretch (Layer Proprietes > Streched > Histograms) individuate the outliers range of values (right tail of the raster histogram) ≈ 150

Step 3.

- Create a mask in which the range of values of outliers is 1 (Spatial Analyst Tools\Conditional\Con)
- Apply the mask to the file l1_max.tif (Spatial Analyst Tools \Extraction\Extract by Mask)
- Once known the range of outliers (≈ 230 m) we can eliminate these using "las2las (filter)" tool in LAStools.

🕻 las2las (filter)			
input file		Â	las2las (filter)
C: \vg \OneDrive \progetti \U1_paper_conference_ecc\U3_Presentazioni \2			Filters LiDAR data using
filter by coordinate (optional)	_		las2las.exe. Clip based on
drop_z_above	•		the x, y, or z coordinate,
coordinate value (optional)	222		the classification or the
	230		return information, or based
filter by other coordinate (optional)	_		on various other properties
	•		thinning by regular or
other coordinate value (optional)			random sampling or via a
			simple grid).
filter by classification or return (optional)	_		
	•	-	The LiDAR input can be
coordinate or return number(s) (optional)		=	LAS, LAZ, BIN, SHP, ASC,
			or TXT. The LiDAR output
inter by various criteria (optional)	-		Can be LAS, LAZ, BIN, or
number of value (ontional)			
output format (optional)			
las	-		
output file (optional)			
output directory (optional)			
C: \vg \UneUrive \progetti \U1_paper_conference_ecc \U3_Presentazioni \2			
output appendix (optional)			
_cor			
additional command-line parameters (optional)	_	-	
additional command-line parameters (optional) OK Cancel Environments	de Help	-	Tool Help

LiDAR: Digital terrain model

Step 1. Create a Multipoint file from the Las data (3D Analyst Tools \Conversion\From File\LAS to Multipoint) with the following parameters:

- Average point space = 1
- Input class code = 2 (ground)
- Coordinate system = WGS_1984_UTM_Zone_32N

•		4	Ε
Coordinate System (option	nal)		
WGS_1984_UTM_Zone_	32N		
File Suffix (optional)			
las			
Z Factor (optional)			
		1	Ŧ

LiDAR: Digital terrain model

Step 2. From the multipoint create the DTM using the IDW (inverse distance weighted) interpolation technique (3D Analyst Tools\Raster Interpolation\IDW)

- Z value field = Shape.z
- Cell size = 2
- Power = 0.5

LiDAR: Digital Surface model (DSM) and Canopy Height Model (CHM)

Step 3. Create a DSM using the same tool and the same parameters used in the first step of the outliers removal procedure. (This time using the LAS corrected from outliers l1_cor.las)

Step 4. Create a CHM subtracting the DTM from the DSM

The CHM thus created presents also has buildings in it. It is possible to create a CHM without buildings using the lasfilter tool (LASTOOL) in order to eliminate points belonging to the building class (class 6) and repeat the step 3 and 4 with the new las.