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1) Fundamental solar radiation
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1) Fundamental solar radiation

 Energy is defined as
the abllity to do work
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Energy

FORMS OF ENERGY

* Energy is defined as

the ability to do work
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Energy Transfer

« Although energy Is conserved, it can
move through the following mechanisms:

1) Conduction — heat transfer by physical
contact, from higher to lower temperature




Conduction in the Atmosphere

* Occurs at the atmosphere/surface
Interface

 Partly responsible for daytime heating/nighttime
cooling! (The diurnal cycle)



Energy Transfer

« Although energy Is conserved, it can
move through the following mechanisms:

2) Convection — heat transfer by movement

— Convection




Convection In the Atmosphere
[

* Vertical transport of heat
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Convection In the Atmosphere

* Vertical transport of heat
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* Horizontal transport of heat = advection



Convection in the Atmosphere




Energy Transfer

« Although energy Is conserved, it can
move through the following mechanisms:

3) Radiation - transfer of E Q(\ /
energy by electromagnetic ) g b&
radiation (no medium bg
required!)



Radiation

Characteristics of radiation
1) Wavelength — the distance between wave crests

Wavelength

Crest (ridge)

Amplitude

Trough

2) Amplitude — the height of the wave
3) Wave speed — constant! (speed of light - 186,000
miles/second)



Radiation

* The wavelength of radiation determines its type
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« The amplitude determines the intensity



Radiation

 WWhat emits radiation? EVERYTHING!!

Photosphere
3 00,000 km ./j"."’ﬁf:ff -

Radiation

Core
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Radiation

* The types (wavelengths) and intensity
(amplitudes) of radiation depend on temperature
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Radiation

« Blackbody — an object that absorbs all radiation and
emits the maximum amount of radiation at every
wavelength (not realistic)
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« Graybody — an object that emits a fraction (emissivity)
of blackbody radiation (more realistic)

 Total radiation emitted is equal to the sum over all
wavelengths above



Radiation Laws

« Stefan-Boltzmann Law — the total amount of
blackbody radiation emitted (l) is related to
temperature:

| = oT*



Radiation Laws

« Stefan-Boltzmann Law — the total amount of
blackbody radiation emitted (l) is related to
temperature:

| = oT*

* For a graybody, this becomes:
| = eoT?
where € Is the emissivity



Radiation Laws

 Wien’s Law — the wavelength of maximum
blackbody emission is related to temperature:

A, =2900/T

max
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Earth is NOT (~290 K)



Typical atmospheric transmittance in VIS-SWIR
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Absorption Spectra of Atmospheric Gases
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Practical use of Radiation
Properties

 Visible satellite imagery doesn’t work in the dark

 Infrared (longwave) radiation occurs always —
y!
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Solar Radiation and the Earth

 The solar constant — the amount of solar
radiation hitting the earth

ounding sphere = 6.3

-
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Solar Radiation and the Ear

Earth — 1367 W/m?2
Mars — 445 W/m?
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Solar Radiation and the Earth

Earth’s tilt is the true cause of the seasons!
 Earth’s axis is tilted 23.5°
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Solar Radiation and the Earth

» 3 factors contribute to
the amount of incoming
solar radiation
(iInsolation):

1) Period of daylight
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Period of Daylight

Length of daylight Noontime solar angle

March 21 and
September 21 12 hr
12 hr

Sun rays

12 hr
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Vernal and autumnal equinox



Period of Daylight
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Winter solstice



Solar Radiation and the Earth

» 3 factors contribute to @
the amount of incoming
solar radiation
(iInsolation):

2) Solar angle

(b)
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Solar Angle

North Pole
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Solar Radiation and the Earth

» 3 factors contribute to
the amount of incoming
solar radiation
(iInsolation):

3) Beam depletion




Beam Depletion
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Planetary Albedo

« A fraction of the incoming solar radiation (S) is
reflected back into space, the rest is absorbed
by the planet. Each planet has a different
reflectivity, or albedo (0):

— Earth a=0.31 (31% reflected, 69% absorbed)
— Mars a=0.15
— Venus a=0.59
— Mercury a =0.1
* Net incoming solar radiation = S(1 - a)

* One possible way of changing Earth’s climate
IS by changing its albedo.



Land has
higher
albedo than
ocean

Clouds have
high albedo

lce and snow
have high
albedo




2) Energy balance

Principles of Terrestrial
Ecosystem Ecology

Chapin, Matson and Vitousek
2"d edition, 2011

Chapter 4
Water and Energy Balance
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Energy balance equation

K+L+H+LE+G+A,+AQ/At=0

where:

K net shortwave radiation Units: [EL2T]
L net longwave radiation

LE latent heat transfer

H sensible heat transfer

G soil flux

Aw advective energy

AQ/At change in stored energy

Bowen ratio = H/LE replace H = B-LE

39



2) Other relevant biophysics
Reflection of land surface



Seeing (infra)Red

- IR “
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Chlorophyll strongly absorbs radiation in the red and blue wavelengths
but reflects green wavelengths. (This is why healthy vegetation appears
green.)

The internal structure of healthy leaves act as excellent diffuse reflectors
of near-infrared wavelengths.

Measuring and monitoring the near-IR reflectance is one way that
scientists can determine how healthy (or unhealthy) vegetation may be.

Anita Davis & Jeannie Allen



Spectral information:
vegetation
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Vegetation characteristics
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Spectral signature

Explain why water looks darkish blue; Explain why vegetation looks
greenish; Explain why sand looks reddish yellow
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2) Other relevant biophysics

Vertical temperature

Atmospheric temperature

http://lightning.sbs.ohio-state.edu/geog1900/ch4_pressure_windl1.ppt(4 slides)



Temperature Basics

« Temperature — measure of average kinetic energy
(motion) of individual molecules in matter

« Three temperature scales (units): Kelvin (K), Celsius (C),

Fahrenheit (F)

— All scales are relative

— degrees F = % degrees C + 32
— degrees K = degrees C + 273.15

ﬁ ar3 ﬁ 100 ﬁ

Il 353 IEE I 178
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An artist’ s view
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« Pressure-temperature relation (Ideal gas law)
« Adiabatic lapse rate (dry & wet)

Vapour

— Vapour pressure, €a

— Sat. vapour pressure, ea*

— Absolute humidity, pv

— Specific humidity, g = pa/pv
— Relative humidity, Wa = ea/e:
— Dew point temperature, Tq

Vapor pressure (kPa)

T T T T T T
—40 -20 0 To 20Tc Tz Tia 40
Temperature (°C)
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4) A few selected applications of RS in
ecosystem studies

Lisnderape Ecology 19 2913014, 30k, 24
i 200 Klawer Acadewsic Publishers. Prinded ix the Netherlamdr.

Research article

Disturbance and landscape dynamics in the Chequamegon National Forest
Wisconsin, USA, from 1972 to 2001

Mary K. Bresee'*, Jim Le Moine', Stephen Mather'. Kimberley D. Brosofske”,

Jiguan Chen'. Thomas R. Crow” and John Rademacher’

IDepartment af Earth, Ecological, and Emvironmental Science, University of Toledo, OH 43606, USA;
chool of Forest Resources and Emvironmental Science, Michigan Technological Umversiry, Houghton, M1
49931, USA; 3Forestry Sciences Lab, USDA Forest Service, Grand Rapids, MN 55744, USA; "Author for
correspondence (e-mail: bres9573 @hotmail.com)

Reoocived 2% Scpicmber 2002; soorpied in novised form 12 May 2003

Key words: Dhsturbance, Forest management, Fragmentation, GIS, Landscape dynamics, Landscape structure,
Landsat MSS, Roads, TM and ETM+, Wisconsin



4) A few selected applications of RS in
ecosystem studies
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Fipure 2. Six classificd images (1972-2001) of the landscape. Cover types include mixed hardwood {MH), jack pinc (JP), red pinc (RP),
mixed hardwood/conifer (MHC), regencrating forest or shrub (REFS), and non-forested bare ground (NFBG).



4) A few selected applications of RS in
ecosystem studies

Available online at www.sciencedirect.com

Remote Sensing
SCIENCE@DIRECT" A of
Environment

ELSEVIER Remote Sensing of Environment 93 (2004) 402—411

www.elsevier.com/locate/rse

Estimating aboveground biomass using Landsat 7 ETM+ data across a
managed landscape in northern Wisconsin, USA

a,*x b 2 : 2
Daolan Zheng™™", John Rademacher”, Jiquan Chen®, Thomas Crow", Mary Bresee",
. 1 2
James Le Moine®, Soung-Ryoul Ryu®
“Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
USDA, Forest Service Ruby Mtn./Jarbidge Ranger District, Wells, NV 89835, USA

“USDA Forest Service, WFWAR, Arlington, VA 22209, USA
dDepar."me;z." of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48108, USA

Received 7 January 2004; received in revised form 13 July 2004; accepted 5 August 2004



4) A few selected applications of RS in
ecosystem studies

a) b)
Calculated AGE based on _
field measuremants T e o2 e
P e S
Satellite derived I .
Information, 2001
. L]
Initial AGB map Stapwise ) .
regreassions | Satellite derived |
Infarmation and age L . S—
| A
Land=cover Final AGB N
Age map map of TN map .'.-_ ] 5 1.0 Hilometers
| f

Fig. 1. (a) Framewodk of estimating AGB (Mg'ha) using Landsat 7 ETM+ data and field measurements in the CNF; and (b) spatial distributions of the plots
used for model construction (circles) and validation (triangles).



4) A few selected applications of RS in
ecosystem studies

D. Zheng et al. / Remote Sensing of Environment 93 (2004) 402-411
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Fig. 3. Maps for (a) AGB (Mg/ha), (b) land cover, and (c) age map (recoded as a category map to increase the readability). All were derived from 2001 Landsat
7 ETM+ data for CNF.



4) A few selected applications of RS in
ecosystem studies




4) A few selected applications of RS in
ecosystem studies

Environ. Res. Lett. 4 (2009) 045010 R John et al
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Figure 1. Changes in LCLU in Inner Mongolia between 1992 and 2001/2004 based on AVHHR (1992) and MODIS (2001 and 2004) derived

IGBP classification, modified through recoding for forest, shrubland and savanna classes. Graphs denote proportions and changes in LCLU
between 1992 to 2001 and 2004.



4) A few selected applications of RS in
ecosystem studies
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Species richness Shrubs
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Fig. 2. Species richness distributions at county level include: a) all species, b) shrubs, ¢) underground bulbs/corms, d) perennial herbs, e) trees, and f) annuals. These
maps were developed based on species distribution database at county level from Flora of Inner Mongolia (Ma, 1989, 1990, 1993, 1994, 1998).



4) A few selected applications of RS in

ecosystem studies

Wind River

Figure 2. Map and stand visualization simulations (SVS) of nl Iiva stems =5 cm dbh at Wind Rwu and Teakettle. Circles
are proportional to diameter and color coded by species. T¢ plots and circle sizes have
been scaled to the same dimension. Species codes at Wind Rlvav are Abies amabilis (ABAM), A. grandis (ABGR), A procera
{ABPR), Alnus rubra (ALRU), Cornus nuttalli (CONU), Pinus monticola (PIMO), PSME (Pseudotsuga menziesii), Taxus
brevifolia (TABR) ﬂnql plicata (THPL), and Tsuga heterophylla (TSHE). Species codes at Teakettle are Abies concolor
(ABCO), A (ABMA), C: (CADE), Pinus lambertiana (PILA), P. jeffreyi (PIJE), Quercus chryso-
lepis (QUCH), and Q. kelloggii (QUKE). Crowns representations of each tree by species were developed from shapes in SVS
and drawn over the location of each stem.

304 Forest Science SX3} 2004

Fig. 3. Typical CANAPI crown (circle) and tree shadow (line) detections over
QuickBird 0.6 m panchromatic images in the Teakettle Experimental Forest,
Sierra National Forest, Califormia. Shadows that are tnncated by tree crowns or
the edge of the image are not used in tree height calculation The imagery was
acqured June 23, 2003.



4) A few selected applications of RS in
ecosystem studies

BT 10.100%/210021-004-0144.5 ECOSYSTEMS

2004 Springer-Yerkg

Spectral and Structural Measures of
Northwest Forest Vegetation at Leaf
to Landscape Scales

Dar A. Roberts,'” Susan L. Ustin,> Segun Ogunjemiyo,’
Jonathan Greenberg,” Solomon Z. Dobrowski,” Jiquan Chen,” and
Thomas M. Hinckley*

1Department of Geography, EH3611, Universily of California, Santa Barbem, California, 83106, USA; *Department of Air, Land,
and Water Resources, Universify of California, Davis, California, 85616, USA; “*Department of Earth, Ecological, and
Environmental Sciences, University of Teledo, Tolede, Ohio 43608, USA; *College of Forest Resources, University of Washington,
Seaftle, Washingfon 28195, U5A
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4) A few selected applications of RS in
ecosvstem studies

Spectral and Structural Measures of Padfic Northwest Forests 551
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4) A few selected applications of RS in

556

ecosystem studies

D. A. Roberts and others

Fractions

Figure 6. AVIRIS image
data from a subset of the
study site showing albedo,
spectral fractions for non-
photosynthetic vegetation
{NPV), green vegetation
(GV), and shade. The nor-
malized difference vegeta-
tion index (NDVI), scaled
between 0.6 and 1.0, and
cquivalent water thickness
{EWT), scaled between 0
and 5,100, are shown to
the right of spectral frac-
tions. Five locations that
represent a diversity of age
classes are in the shade im-
age. These stands are A) 8,
B) 29, C) 70, D) 132, and
E) 461 years old.



