- Uses the spectral information represented by the digital numbers in one or more spectral bands.
- Classifies each individual pixel based on this spectral information. Also known as spectral pattern recognition.
 - The objective: To assign all pixels in the image to particular classes or themes (*e.g.*, water, coniferous forest, deciduous forest, crops, bare soil, etc.)

□ The two approaches:

- Per-pixel classification
 - The algorithm categorizes each input pixel into a spectral feature class based solely on its <u>individual multispectral vector</u> (signature). No context or neighborhood evaluation is involved.
- Object-oriented classification
 - The input pixels are grouped into spectral features (objects) using an *image segmentation algorithm*. These objects are characterized in both the raster and vector domains. The objects are classified using both spectral and spatial cues (metrics).

- □ The three common **per-pixel** methods are:
 - Supervised classification
 - Unsupervised classification
 - Rule-based classification

Supervised classification

The analyst "supervises" the categorization of a set of specific classes by providing *training statistics* that identify each category.

Unsupervised classification

- The raw spectral data are grouped first, based solely on the statistical structure of the data. Then the analyst must label each statistical cluster, placing them into the appropriate categories (if possible).
- Rule-based classification
 - Spectrally categorized pixels are classified using ancillary data in a GIS model.

Supervised classification

- In the imagery, the analyst identifies homogeneous, representative examples of the various surface cover types (information classes) of interest.
- > These samples are referred to as **training areas**.
- The selection of appropriate training areas is based on the analyst's familiarity with the geographical area and their knowledge of the actual surface cover types present in the image.

Good visual interpretation skills are mandatory for success.

Supervised classification

□ Supervised classifiers (algorithms)

- Parallelpiped based on range or variance of class DNs
- Minimum Distance-to-Means based on mean class DNs
- Maximum Likelihood based on probability of class membership
- Spectral Angle Mapper class membership based on minimum difference from the *n*-dimensional spectral vectors of the classes

Supervised classification process

- Step I: Define training data
 - ✓ Each training site should appear homogenous and representative of the legend class
 - \checkmark Delineate several training sites for each legend class
 - Make each training site at least 20-25 pixels (i.e., > 5 acres for 30 meter pixels)

Each class should be represented by ~ 100 n pixels (where n = number of spectral bands in the data set)

Supervised classification process

- Training Sites
 - ✓ For 6-band TM & ETM imagery, the total number of training pixels <u>per class</u> should be at least 600
 - \checkmark Try to capture the landscape diversity of the class

Example of a homogeneous training site

Example of a heterogeneous training site

□ Supervised classification process

- Training data
 - ✓ Should be normally distributed if the maximum likelihood classifier is going to be used

□ Supervised Classification Process

Collect several training sites for each class in order to capture the landscape diversity of the class

□ Supervised Classification Process

> For variable classes **do NOT** merge signatures

The disadvantage of merged signatures:

shifted mean DN value (atypical of the class) and a large variance

□ Training Sites – Tools in ERDAS Imagine

> Drawing tab: Insert Geometry Tools

\Box Drawing Tools \rightarrow Region Grow tool

\Box Drawing Tools \rightarrow Region Grow tool

\Box Drawing Tools \rightarrow Region Grow tool

Step 3: Evaluate Spectral Euclidean Distance:

Spectral Euclidean Distance = 15 Spectral Euclidean Distance = 5 using 8-bit imagery

With 16-bit imagery, SED ~ 900 to 2000 are appropriate

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 21 / 72

□ Training Sites – Tools in ERDAS Imagine

 \succ Raster tab \rightarrow Classification Group \rightarrow Supervised

□ Training Sites – Tools in ERDAS Imagine

➤ Signature Editor → Create New Signature(s) from AOI(s)

📽 Signature Editor (No File)	
File Edit View Evaluate Feature Classify Help	
File Edit View Evaluate Feature Classify Help	Signature Editor (No File) File Edit File Edit L +L +L ++ E ∑ N ▲ Class # > Signature Name Color Red Green Blue Value Order 0.800 0.242 0.239

□ Training Sites – Tools in ERDAS Imagine

□ Training Sites – Tools in ERDAS Imagine

> Signature Editor \rightarrow View \rightarrow Image Alarm

📽 Sig	inati	ure Ed	itor (No Fi	ile)				
File I	Edit	View	Evaluate	Fea	ture	Classif	y Help	1014 1
		Ima Ima	age AOI age Alarm.				▼	▲
Class	#	Sta	tistics		ame		Color	Red
	1	Me	an Plots					1.000
		His	tograms					
		Co	mments					
		Col	lumns					
					23			

$\Box \text{ Signature Editor} \rightarrow \text{View} \rightarrow \text{Image Alarm}$

$\Box \text{ Signature Editor} \rightarrow \text{View} \rightarrow \text{Image Alarm}$

- Set Std. Deviation between:
 - ✓ **2.00** (95.4% of the data)
 - ✓ **3.00** (99.7% of the data)
 - 1.00 SD = 68.3% of the data

🛱 Set Parallelepiped Limits	>
Method:	/
Minimum/Maximum Std. Deviation	.0 ÷
Signatures;	
	All
OK Cancel	Help

Rationale: Eliminate the most atypical pixel values from consideration.

Image Alarm uses the simple Parallelepiped classifier in which each class is defined as an n-dimensional volume whose boundaries in brightness space are set by these limits.

□ Visually evaluate Image Alarm for:

- **Errors of Omission**
- Errors of Commission

Errors of Omission

Indicates the need for and location of additional training sites to adequately capture the spectral variability of the class in question.

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 29 / 72

Errors of Commission

- Indicates that the training site is not spectrally "pure" regarding the assumed land cover/use class.
- The analyst must go back to "constrict" the training site (spectrally) by editing the existing training polygon or drawing a new one.
- General rule: "Do no harm" (*i.e.*, it is better to leave some pixels unclassified (omission errors) rather than to have large commission errors).

Maximum Likelihood Probability classifier

- Without A Priori Probability Information
 - Decide unknown measurement vector X is in class i if, and only if, p_i > p_j for all i and j out of 1... m possible classes and

$$p_{i} = \frac{1}{2} \log_{e} |V_{i}| - \left[\frac{1}{2} (X - M_{i})^{T} V_{i}^{-1} (X - M_{i})\right]$$

Where $|V_i|$ is the determinant of the covariance matrix, $(X - M_i)^T$ is the transpose of the vector $(X - M_i)$ and V_i^{-1} is the inverse of the covariance matrix. M_i is the mean measurement vector for class *i*, and V_i is the covariance matrix of class *i* for bands *k* through *l*. Therefore, to assign the measurement vector *X* of an unknown pixel to a class, the maximum likelihood decision rule computes the value P_i for each class and assigns the pixel to the class that has the largest (or maximum) value.

Maximum Likelihood Probability classifier

- Without A Priori Probability Information
 - The mean vectors M_i and covariance matrix V_i for each class are estimated from the training data.

$$p_{i} = \frac{1}{2} \log_{e} |V_{i}| - \left[\frac{1}{2} (X - M_{i})^{T} V_{i}^{-1} (X - M_{i})\right]$$

Where $|V_i|$ is the determinant of the covariance matrix, $(X - M_i)^T$ is the transpose of the vector $(X - M_i)$ and V_i^{-1} is the inverse of the covariance matrix. M_i is the mean measurement vector for class *i*, and V_i is the covariance matrix of class *i* for bands *k* through *l*. Therefore, to assign the measurement vector *X* of an unknown pixel to a class, the maximum likelihood decision rule computes the value P_i for each class and assigns the pixel to the class that has the largest (or maximum) value.

Maximum Likelihood Probability classifier

Unknown pixel 1 is assigned to class H because P1H > P1R >> P1J

> Unknown pixel 2 is assigned to class R because p_{2R} , p_{2J} , p_{2H}

> Unknown pixel 3 is assigned to class R because P_{3R} > P_{3H} >> P_{3J}

> > October 2015 33 / 72

□ Maximum Likelihood Probability classifier

Probability Density Functions Derived from Multispectral Training Data

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 34 / 72

Maximum Likelihood Probability classifier

> Advantages

 \checkmark Sensitive to both variance and covariance in the training data

Disadvantages

 \checkmark Training data must be normally distributed

✓ The per-pixel, rather than pixel neighborhood approach, remains a problem

Maximum Likelihood Probability classifier

Multi-band Variance, Covariance and Correlation

David P. Lusch, Ph.D. G

. GEO 827 – Digital Image Processing and Analysis October 2015 36 / 72
Maximum Likelihood Probability classifier

Variance – Covariance Matrix

 $\sigma_{11}^2 = 5192.16$ $\sigma_{12}^2 = 3866.65$ $\sigma_{13}^2 = 2722.83$ $\sigma_{14}^2 = 1094.98$ $\sigma_{22}^2 = 3781.67$ $\sigma_{23}^2 = 2520.50$ $\sigma_{24}^2 = 1462.00$ $\sigma^2_{33} = 4806.52$ $\sigma^2_{34} = 3652.66$ $\sigma^{2}_{44} = 3927.78$

Sum of variances = 17708.13

4-band data set (range 0 - 255) Mean band 1 = 129.29Mean band 2 = 106.63 Mean band 3 = 104.71Mean band 4 = 121.80

Maximum Likelihood Classifier

\succ Raster tab \rightarrow Classification Group \rightarrow Supervised

	Raster)	Supervised Classification	X
Help Google Ea	rth Multispectral Drawing	Format Tak	Input Raster File: (*.img)	Input Signature File: (*.sig)
	2 🔛 🖬 🕻	2	d123457_corrected.img 🗸 😭	
Unsupervised Su	IMAGINE Hyperspectral Objective	nowledge Engineer •		
E	Supervised Classification	Chi	Classified File: (*.img)	Distance File 🥒 🖉
r_4)(:Layer_3)(:Lay	Signature Editor			Fileneme: (* img)
	Feature Space Image			
	Feature Space Thematic	A	Attribute Options	
E	Fuzzy Convolve			
2	Threshold	الأحفظ فألج	Fuzzy Classification 2	2 🗧 🗧 Best Classes Per Pixel
1	Grouping Tool			
id	Fuzzy Recode	Contraction of	Decisi	ion Rules:
×	Accuracy Assessment			
A	Area Frame Sampling		Non-parametric Hule:	None 🎽
2	Project Manager		Overlap Bule:	Parametric Bule
2	Grid Generation	And the second	e rendernate.	
	Sample Selection		Unclassified Rule:	Parametric Rule
2	Dot Grid Analysis			
Z	Polygon Analysis		Parametric Rule:	Maximum Likelihood 🛛 🔽
			Classify zeros	Use Probabilities
			OK Batch A	OI Cancel Help

Maximum Likelihood Classifier

- > All pixels are classified initially, irrespective of how low the probabilities of class membership are.
- > E.g., assume the probabilities of pixel *i* belonging to one of eight classes is:
 - $p_1 = 0.0125$
 - $p_2 = 0.0237$
 - $p_3 = 0.0105$
 - **p**₄ = 0.0095
 - $p_5 = 0.0275 +$
 - $p_6 = 0.0078$
 - $p_7 = 0.0083$
 - **p**₈ = 0.0195

Pixel *i* is assigned to Class 5 even though its probability of class membership is only 2.75% (i.e., it's 97.25% likely to NOT be a member of Class 5 (and even less likely to be a member of any other class).

Maximum Likelihood Classifier

- > Threshold tool (Raster tab \rightarrow Supervised \rightarrow Threshold)
 - Thresholding is a statistical method used to refine a supervised classification by determining which pixels in the new thematic raster layer are most likely to be incorrectly classified (using the distance file that was created during the supervised classification). These distances occur in probability space, so larger distances are associated with lower probabilities of class membership.
 - The histogram of the distance file usually approximates a *chi-square distribution*. Normally, there are many pixels with a distance image value at or near 0, indicating that these pixels are likely to be classified correctly. A histogram is generated for each class in the classified image file.
 - Analyst displays, inspects and edits (thresholds) each histogram. The rejected pixels become "unclassified."

Maximum Likelihood Classifier

> Threshold tool (Raster tab \rightarrow Supervised \rightarrow Threshold)

Given Spectral Angle Mapper

Where nb is the number of bands in the image, t is the unknown pixel spectrum, and r is reference spectrum.

Spectral Angle Mapper

- Given a set of reference signatures collected from an image with *m* bands, the SAM classifier performs the following two steps:
 - Step 1: Determine the spectral angle $\theta_{i,r}$, between a pixel *i* in the image and every reference class *r*: (

$$\theta_{i,r} = \cos^{-1} \left(\frac{\sum_{m=1}^{nb} t_{i,m} r_{r,m}}{\sqrt{\sum_{m=1}^{nb} t_{i,m}^2 \sum_{m=1}^{nb} r_{r,m}^2}} \right)$$

Spectral Angle Mapper

- Step 2: Assign each pixel to the reference class rthat has the smallest spectral angular distance between pixel i and reference class r. For each pixel i = 1 to n, find the reference class r such that the $\theta_{i,r}$, is the minimum of all reference classes.

Spectral Angle Mapper Classifier

- > Advantages
 - \checkmark Often more accurate than maximum likelihood
 - \checkmark Less sensitive to illumination differences

Disadvantages

 Numerous training spectra required to describe the "best" mean vector for each class

Spectral Angle Mapper

\succ Raster tab \rightarrow Classification Group \rightarrow Supervised

	Raster	Supervised Classific	ation
Help Google Ear	th Multispectral Drawing For	rmat Tak Input Raster File: (*.	img) Input Signature File: (*.sig)
	2 🔛 🖬 🕗	lansing_sub.img	
Unsupervised Sup	opervised IMAGINE Hyperspectral	nowledge	
E E	Supervised Classification	Classified File: (*.img)	
_4)(:Layer_3)(:Lay	Signature Editor		Elenamer (* img)
	Feature Space Image		
	Feature Space Thematic	Attribute Uptions.	
	Fuzzy Convolve		
2	Threshold	🗌 🗌 Fuzzy Classification	2 Best Classes Per Pixel
8	Grouping Tool		Decision Bules:
	Fuzzy Recode		
2	Accuracy Assessment	Non-parametric Ru	ile: None 🔻
	Project Manager		
	Grid Generation	Overlap Rule:	Parametric Rule
×	Sample Selection	Upplassified Rules	Parametria Pula
×	Dot Grid Analysis	Unclassified Hule	
×	Polygon Analysis	Parametric Rule	4. Spectral Angle Mapper
		🗖 Classify zeros	Use Probabilities
		OK Batch	ADI Cancel Help

Image Classification

- Classifications can always be improved perfection is rarely possible, especially using precise LULC categories
- Per pixel classification works best with moderate spatial resolution imagery (GSD >= 20 meters)
- The classification process is iterative it's rare to have high classification accuracy after the first attempt
- Consider a hybrid classification part supervised, part unsupervised (especially in areas where your field experience is limited)

Manual Classification and/or Editing is not cheating, but can be extremely time consuming

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 48 / 72

Supervised classification

The analyst "supervises" the categorization of a set of specific classes by providing *training statistics* that identify each category.

Unsupervised classification

The raw spectral data are grouped first, based solely on the statistical structure of the data. Then the analyst must label each statistical cluster, placing them in the appropriate categories (if possible).

Rule-based classification

Spectrally categorized pixels are classified using ancillary data in a model.

- Requires only minimal initial input from the analyst.
- However, the analyst has the task of interpreting the many classes that are generated by the unsupervised classification algorithm.
- Unsupervised classification is also called clustering, because it is based on the natural groupings of pixels in image data when they are plotted in feature space.

- □ Clusters are defined with a clustering algorithm.
- The clustering algorithm has no regard for the contiguity of the pixels that define each cluster unlike the training areas for supervised classification.
 - The Iterative Self-Organizing Data Analysis ISODATA clustering method uses spectral distance and iteratively classifies the pixels.

After each iteration, ISODATA redefines the criteria for each class, and classifies again, gradually "discovering" the spectral distance patterns (*i.e.*, the clusters) in the data.

- The initial cluster means are evenly distributed across the feature space along a vector that runs from the
 - > multidimensional -1 σ (μ_1 - σ_1 , μ_2 - σ_2 , μ_3 - σ_3 , ... μ_n - σ_n) to the
 - > multidimensional +1 σ ($\mu_1 + \sigma_1$, $\mu_2 + \sigma_2$, $\mu_3 + \sigma_3$, ... $\mu_n + \sigma_n$)

ISODATA Initialization

- □ ISODATA uses minimum spectral distance to assign a cluster for each candidate pixel.
 - The process begins with a user-specified number of arbitrary cluster means (or the means of existing signatures).
 - With each iteration, the means shift to those of the clusters in the data.
 - Because ISODATA is iterative, it is not biased to the top of the data file, as are the one-pass clustering algorithms.

The spectral distance between any candidate pixel and each cluster mean is calculated and the pixel is assigned to the cluster whose mean is the closest.

□ Multispectral Feature Space

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 55 / 72

ISODATA first pass

ISODATA in ERDAS Imagine

\succ Raster tab \rightarrow Classification Group \rightarrow Unsupervised

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 60 / 72

□ **ISODATA** in ERDAS Imagine

- After each iteration, the normalized percentage of pixels whose assignments are unchanged since the last iteration is determined.
- □ When this number reaches *T* (the convergence threshold), the program terminates.

As a QA check, ensure that the program terminated because it reached the convergence threshold and not because it reached the maximum number of iterations.

\Box File \rightarrow Session \rightarrow View Session Log

Input Raster File: (*.img) Iansing_sub.img	Performing iteration: 1	Convergence: 0.000
Output Cluster Layer Filename: (*.img)	Performing iteration: 2	Convergence: 0.260
Clustering Options:	Performing iteration: 3	Convergence: 0.525
Method: Initialize from Statistics Use Signatures Means K Mea to 36 	Performing iteration: 4	Convergence: 0.862
 Isodat: Minimum Size (%): 0.01 ★ Maximum SD: 5.00 ★ Minimum Distance: 4.00 ★ Max. Merges: 1 ★ 	Performing iteration: 5	Convergence: 0.920
Initializing Options Color Scheme Options	Performing iteration: 6	Convergence: 0.938
Maximum Iterations: 10 Skip Factors:	Performing iteration: 7	Convergence: 0.949
Convergence Threshold: 0.950 X: T	Performing iteration 8	Convergence: 0.957
OK. Batch AOI Cancel Help *		

20 Clusters 6 Iterations

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015 65 / 72

\Box Cluster Labeling \rightarrow Attribute Table

October 2015 66 / 72

□ Cluster Labeling → Attribute Table

\Box Cluster Labeling \rightarrow Attribute Table

Inspect the included LULC classes in each cluster using the SWIPE tool (HOME tab)

Home

0

Contents Metadata

69/72

David P. Lusch, Ph.D. GEO 827 – Digital Image Processing and Analysis October 2015

Cluster Busting

 \blacktriangleright It is common when performing unsupervised classification that the algorithm will generate *n* clusters, but you have no confidence in labeling *q* of them to an appropriate information class (e.g., 15 out of 30 clusters contain multiple LULC categories).

Step I - all the pixels associated with the 15 clusters that are mixed (e.g., clusters 3, 5, 6, 9, 11, 13, 15, 17, 18, 20, 22, 23, 25, 28 and 30) are all RECODED to a value of 1 and a <u>binary mask file</u> is created.

Step 2 - A mask program is run multiplying the binary mask file times the original imagery file. The output of the mask program is a new multiband image file consisting of only the pixels that could not be adequately labeled during the initial unsupervised classification.

Cluster Busting

• Step 3 - Perform a new unsupervised classification on the output file from Step 2, perhaps requesting the original number of clusters.

Step 4 – Repeat Steps I and 2, keeping all of new clusters that are dominated by a single LCLU (e.g., 7). There are likely still some mixed-class clusters, but the proportion of these is definitely smaller.

Step 5 - Repeat Step 3 performing a third iterative unsupervised classification. Perhaps an additional 3 good clusters are extracted.

Cluster Busting

- \succ In this hypothetical example, the final cluster map would be composed of :
 - I5 good clusters from the initial classification,
 - 7 good clusters from the first cluster-busting pass (recoded as values 31 to 38), and
 - 3 good clusters from the second cluster-busting pass (recoded as values 39 to 41).

➤ The final cluster map file is re-assembled using a simple GIS maximum-dominate overlay function. The final cluster map is then recoded to create the final classification map.

