SPECTRAL TRANSFORMS

- Introduction
- Feature Space
- Principal and Tasseled-cap Components
- Spectral Indices (already covered)

Introduction

- There are four "spaces" associated with multispectral remotely sensed images:
 - Spatial Space
 - the DN(x,y,z) space, i.e. an "image"
 - Spectral Space
 - K D vector
 - Feature Space
 - a transformed image or spectral space
 - Temporal Space
 - A temporal vector space

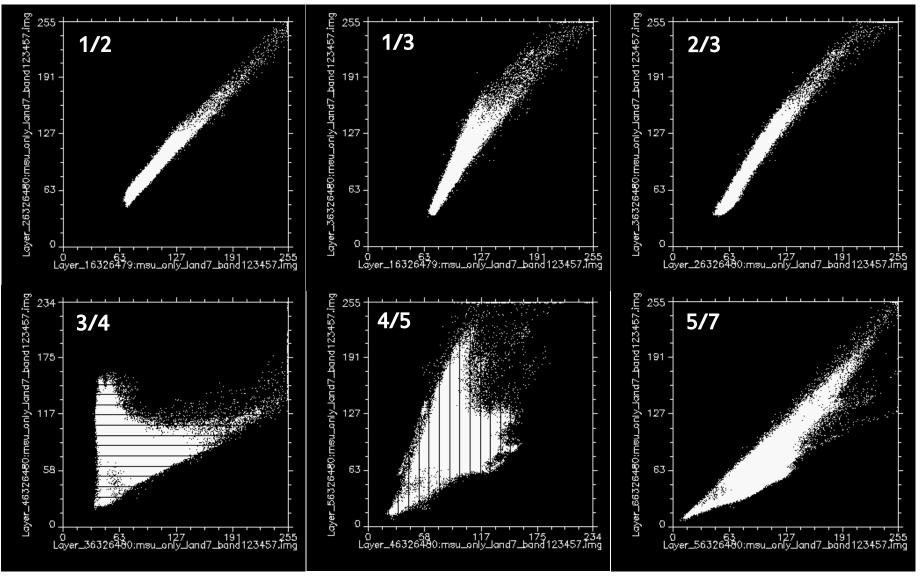
Fall 2015

GEO 827 – Digital Image Processing and Analysis

Feature Space

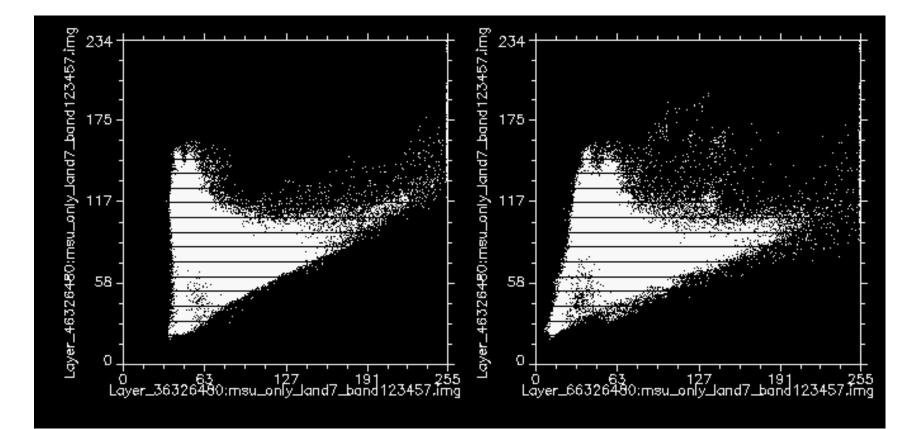
Fall 2015

Spectral bands are often correlated



Fall 2015

Spectral bands are often correlated



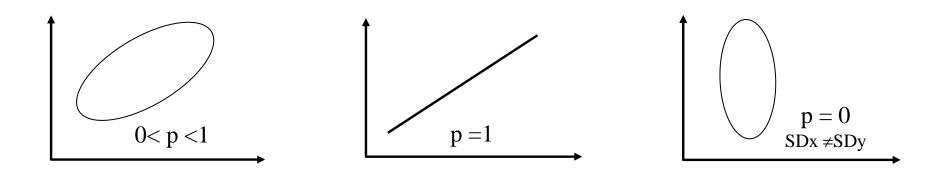
Fall 2015

Transformation

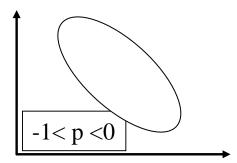
- Linear spectral transform
 - Corresponds to a coordinate rotation of the DN space to the DN' space
 - -Example:principal components transform
- Nonlinear spectral transform
 Example: multispectral ratios
- In either case, *DN*' is the derived *feature space*

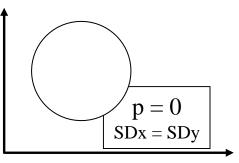
Information Redundancy

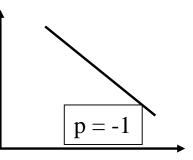
• Much of the information contained in multispectral bands such as those TM or ETM is redundant, i.e., the spectral bands are highly correlated:



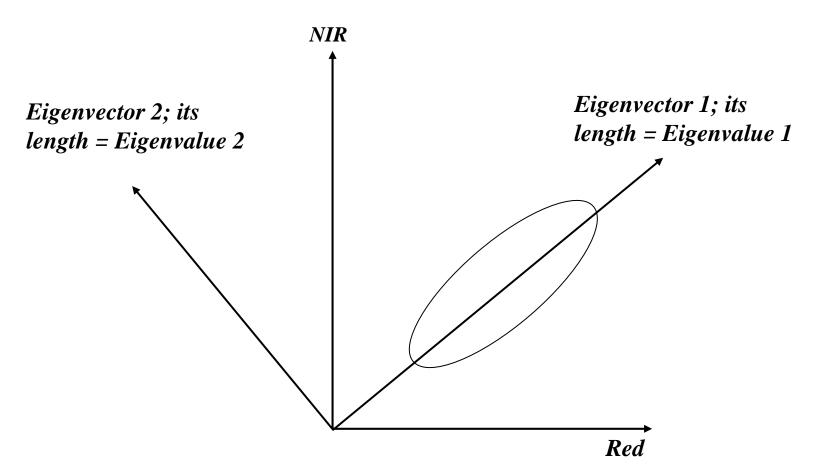
Information Redundancy



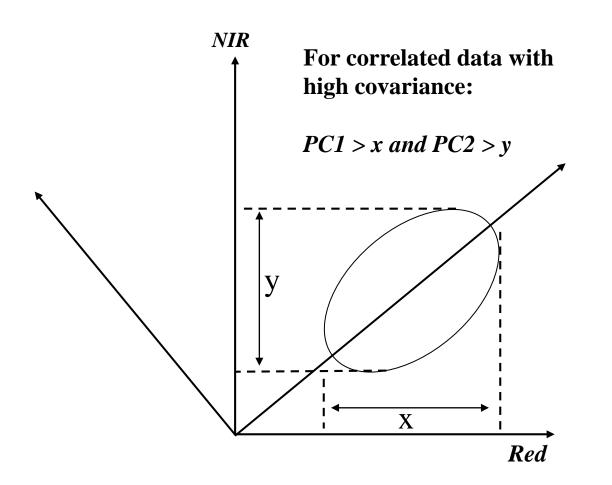




Fall 2015



• If a pre-labeled data is used to find uncorrelated axes-of-separation, the analysis is termed *Canonical Analysis* Fall 2015



Fall 2015

- The principal components are UNCORRELATED (i.e. orthogonal), even though the original variables are correlated
- Eigenvalues = total variance contained along each transformed axis (i.e. the length of the eigenvector)
- Eigenvectors = the individual transformed axes; they define the principal components directions
- The total variance of the original data set = the total variance of the transformed data set.

- PCT is based on the variance and the covariance of the data set (i.e. data dependent)
- Variance = measure of the scatter or spread within one variable of a data set

$$VAR = \frac{n\sum x^2 - \left(\sum x\right)^2}{n^2}$$

• Covariance = measure of the scatter or spread between two variables of a data set

General Form of PCT

• Principal Components Transform (PCT)

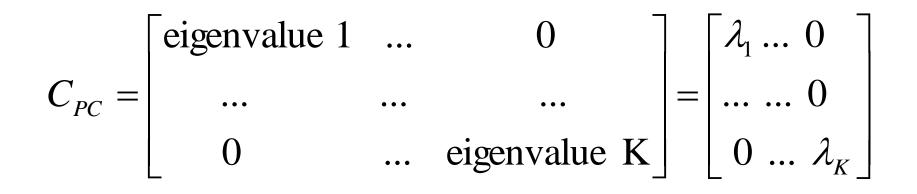
 $PC = W_{PC} \times DN$

- Linear matrix transform
- PC is the K-dimensional Principal Component (PC)vector
- Each PCk is a weighted sum of all spectral bands
- W_{PC} is a K x K transformation matrix

 W_{PC} diagonalizes the covariance matrix, C, of the original image

 $C_{PC} = W_{PC} C W_{PC}^T$

- Since C_{PC} is diagonal, the PC components are uncorrected
- The diagonal elements of C_{PC} are the eigenvalues of the data



 Each eigenvalue, λ_k, is equal to the variance of the corresponding PC_k and is found by solving the characteristic equation.

• W_{PC} consists of the eigenvectors of the data along its rows,

$$W_{PC} = \begin{vmatrix} \text{eigenvector}_{1}^{t} \\ \vdots \\ \text{eigenvector}_{K}^{t} \end{vmatrix} = \begin{vmatrix} e_{1}^{t} \\ e_{1}^{t} \\ \vdots \\ e_{K}^{t} \end{vmatrix} = \begin{bmatrix} e_{11} & \dots & e_{1K} \\ \vdots & & \vdots \\ e_{K1} & \dots & e_{KK} \end{bmatrix}$$

• Each eigenvector, e_k , consists of the weights applied to the original bands to obtain PC_k and is found by solving the equation,

- It is a rigid rotation in K-D of the original coordinate axes to coincide with the major axes of the data
- Although the PC axes are orthogonal to each other in K-D, they are generally not orthogonal when projected to the original multispectral space
- It optimally redistributes the total image variance in the transformed data
- The transform, Wpc, is data dependent
- The PCT can also be applied to multitemporal datasets. However, interpretation is generally difficult, since you are dealing with the spectral-temporal variations

$\begin{bmatrix} Z \end{bmatrix}_{o} \begin{bmatrix} C \end{bmatrix}_{A} = \begin{bmatrix} ? \end{bmatrix} \begin{bmatrix} C \end{bmatrix}_{A}$ where $\begin{bmatrix} Z \end{bmatrix}_{o} = \begin{bmatrix} D \end{bmatrix}^{T} \begin{bmatrix} D \end{bmatrix}$

Fall 2015

The response matrix is then: $\begin{bmatrix} R \end{bmatrix}_{A} = \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} C \end{bmatrix}_{A}^{T}$ where $\begin{bmatrix} C \end{bmatrix}^{-1} = \begin{bmatrix} C \end{bmatrix}^{T}$

	20%	40%	75%	
	14.13	10.31	4.72	λ1
	20.92	16.51	9.07	λ2
	25.65	17.88	5.65	λ3
D =	41.78	45.75	51.98	λ4
	45.32	45.49	42.70	λ5
	42.03	35.52	22.99	λ6
	34.46	24.51	9.33	λ7

 $Zo = [D]^T [D] =$

	8048.7	7260.3	5796.0
=	7260.3	6723.4	5665.2
	5796.0	5665.2	5277.3

	17.4076	-5.0156	0.2231	λ1
	27.5461	-5.8055	-0.0095	λ2
	29.6507	-11.4173	0.1469	λ3
$[R]_{A} = [R1 R2 R3] =$	79.4493	15.1036	0.4913	λ4
	76.9122	5.5487	-0.5012	λ5
	59.1074	-7.9304	-0.3919	λ6
	40.9911	-13.9600	0.3587	λ7

Data decomposition for the first three components

Component	Eigenvalue	Variance	RSD	Eigenvector		
(n)	(I)	(%)	(+/-)	(C)		
1	1934.3	96.475	7.11	0.6351 0.5895 0.4991		
2	70.6	3.5208	0.35	-0.5908 -0.0455 0.8055		
3	0.1	0	0	0.4976 -0.8065 0.3194		

Fall 2015

PCT Example

• Here is an example to show the variance invariant nature

Mean Band 4 = 129.29(range 0-255)Mean Band 5 = 106.63(range 0-255)Mean Band 6 = 104.71(range 0-255)Mean Band 7 = 121.80(range 0-255)

Covariance Matrix:

$$\sigma_{11}^{2} = 5192.16 \qquad \sigma_{12}^{2} = 3866.65 \qquad \sigma_{13}^{2} = 2722.83 \qquad \sigma_{14}^{2} = 1094.98 \\ \sigma_{22}^{2} = 3781.67 \qquad \sigma_{23}^{2} = 2520.50 \qquad \sigma_{24}^{2} = 1462.00 \\ \sigma_{33}^{2} = 4806.52 \qquad \sigma_{34}^{2} = 3652.66 \\ \sigma_{44}^{2} = 3927.78 \end{cases}$$

Sum of variance = 17708.13

Fall 2015

PCT Example

• After the data is transformed with PCT

Eigenvalues and eigenvectors are:

$$\begin{split} \lambda_1 &= 12252.33 \\ \lambda_2 &= 4464.40 \\ \lambda_3 &= 639.82 \\ \lambda_4 &= 351.58 \end{split} \begin{array}{ll} e_1 &= (+0.542, \, +0.483, \, +0.559, \, +0.401) \\ e_2 &= (\, -0.563, \, -0.356, \, +0.403, \, +0.627) \\ e_3 &= (\, -0.370, \, +0.682, \, -0.504, \, +0.379) \\ e_4 &= (+0.503, \, -0.418, \, -0.521, \, +0.549) \end{split}$$

Sum of variance = 17708.13

NOTE: the total variance remained the same!

Fall 2015

PCT Demo

This document is to provide you with an example of calculating eigenvalues and eigenvectors for Principal Component Analysis.

If you have a dataset collected with a radiometer or from an image in, say, three spectral bands. The data in ASCII look like

$-\lambda_1$	λ_2	λ3 _	Target
0.337	0.378	0.424	1
0.254	0.291	0.285	2
0.187	0.212	0.116	3
0.179	0.458	0.245	4
0.102	0.339	0.075	5
0.057	0.52	0.093	6
0.045	0.475	0.071	7
0.038	0.654	0.079	8
0.062	0.093	0.246	9

D =

Fall 2015

The following are steps to compute the eigenvalues and eigenvectors:

Step 1: Transposed Data Matrix

$$D^{T} = \begin{bmatrix} 0.337 & 0.254 & 0.187 & 0.179 & 0.102 & 0.057 & 0.045 & 0.038 & 0.062 \\ 0.378 & 0.291 & 0.212 & 0.458 & 0.339 & 0.52 & 0.475 & 0.654 & 0.093 \\ 0.424 & 0.285 & 0.116 & 0.245 & 0.075 & 0.093 & 0.071 & 0.079 & 0.246 \end{bmatrix}$$

Step 2: Compute Covariance (original) Matrix

$$Z = D^{T} * D = \begin{bmatrix} 0.266061 & 0.439137 & 0.315225 \\ 0.439137 & 1.529584 & 0.562063 \\ 0.315225 & 0.562063 & 0.420554 \end{bmatrix}$$

The total variance about the original matrix is = 2.216199 (diagonal summation)

Fall 2015

Step 3: Find eigenvectors using iterative procedure:

 $Z \bullet C = E \bullet C$ Use unit vector first which can be derived from the following equation:

 $1 = sqrt(x^2 + x^2 + x^2) \rightarrow x = sqrt(1/3) = 0.5773503$

0.439137 1.529584 0.562063	$ \begin{bmatrix} 0.57735 \\ 0.57735 \\ 0.57735 \end{bmatrix} = E \bullet C = $	0.58914 1.46119 0.74931
----------------------------	--	-------------------------------

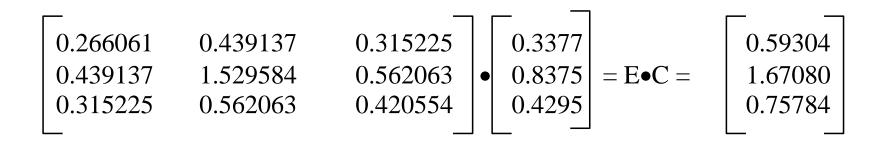
Step 4: Normalize EC to unit vector and corresponding eigenvalues by dividing each element by the square root of the summation, i.e. $sqrt(c1^2+c2^2+c3^2)$

E1 • C1 =
$$\begin{bmatrix} 0.58914 \\ 1.46119 \\ 0.74931 \end{bmatrix}$$
 = 1.744565334 $\begin{bmatrix} 0.3377 \\ 0.8375 \\ 0.4295 \end{bmatrix}$
This is the eigenvector

Fall 2015

GEO 827 – Digital Image Processing and Analysis

Step 5: Iterate unit eigenvector as in previous step

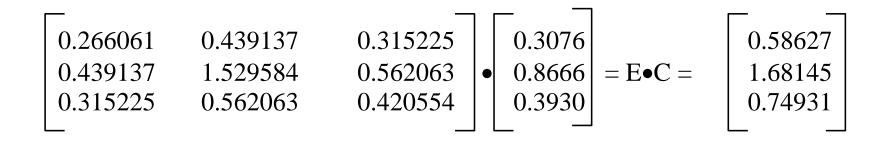


Step 6: Normalize the E•C to unit vector and corresponding eigenvalues:

E1 • C1 =
$$\begin{bmatrix} 0.59304 \\ 1.67080 \\ 0.75784 \end{bmatrix}$$
 = 1.92810479 $\begin{bmatrix} 0.3076 \\ 0.8666 \\ 0.3930 \end{bmatrix}$
This is updated eigenvector

Fall 2015

Step 7: Iterate unit eigenvector as in previous step



Step 8: Normalize the E•C to unit vector and corresponding eigenvalues:

E1 • C1 =
$$\begin{bmatrix} 0.58627\\ 1.68145\\ 0.74931 \end{bmatrix}$$
 = 1.93195274 $\begin{bmatrix} 0.3035\\ 0.8703\\ 0.3878 \end{bmatrix}$
• This is updated eigenvector

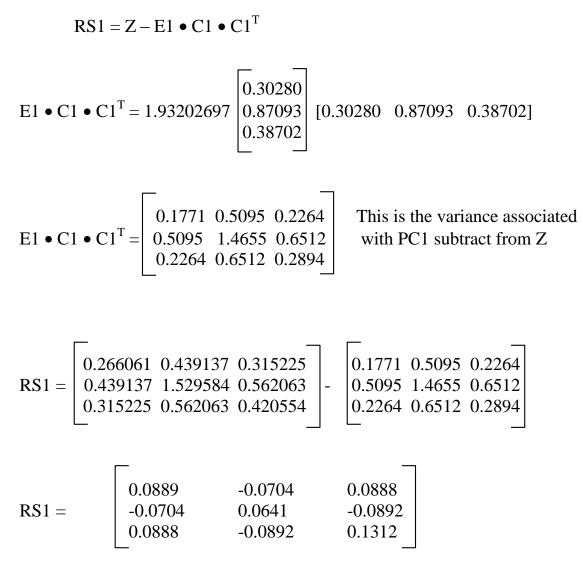
Fall 2015

Step 9: Solution converges to E1 = 1.93202697 after 8 iterations with first eigenvector:

$$C1 = \begin{bmatrix} 0.30280205\\ 0.87093411\\ 0.38702027 \end{bmatrix}$$

Step 10: The first eigenvalue (E1) accounts for 1.93202697 / **2.216199 = 87.178%**

Step **11**: To calculate second eigenvector and eigenvalue you must first remove the variance associated with the first component from the covariance matrix and obtain a residual variance matrix, RS1:



This is left over variance

Fall 2015

Step 12: Now go back to Step 3 and use the RS1 in place of Z:

 $RS1 \bullet C2 = E2 \bullet C2$

After 8 iterations, the second eigenvector and eigenvalues are

$$\mathbf{E2} = 0.265419078 \qquad \text{and} \ \mathbf{C2} = \begin{bmatrix} 0.5398 \\ -0.4914 \\ 0.6835 \end{bmatrix}$$

E2 accounts for 0.265419078 /2.216199 = 11.976%

E1 + E2 accounts for 99.1538 % of total variance

Step 13: To calculate third eigenvector and eigenvalue you must remove the variance associated with the first two components, RS2

$$RS2 = Z - E1 \bullet C1 \bullet C1^{T} - E2 \bullet C2 \bullet C2^{T}$$

Fall 2015

Step 14: After 8 iterations:

$$\mathbf{E3} = 0.01875295 \quad \text{and} \quad \mathbf{C3} = \begin{bmatrix} 0.7854 \\ 0.0019 \\ -0.6189 \end{bmatrix}$$

E3 accounts for 0.01875295/2.216199 = 0.846% of total variance

E1 + E2 +E3 accounts for 100% of total variance

Step 15: Combine C1, C2, and C3 we arrive at C matrix

Eigenvalues	Eigenvector			Account for	Accumulative
	λ_1	λ_2	λ_3		
1.932027	0.3028	0.8709	0.3870	87.178%	87.178%
0.265419	0.5398	-0.4914	0.6835	11.976%	99.154%
0.018753	0.7854	0.0020	-0.6189	0.8462%	100.00%

Fall 2015

Why Use PCT?

- Decorrelates the spectral data
- Multispectral bands are often highlycorrelated because of:
 - Material spectral correlation
 - Topography
 - Sensor band overlap

Why Not Use PCT?

- Data--dependent
 - W coefficients change from scene--to-scene
 - Makes consistent interpretation of PC images difficult
- Spectral details, particularly in small areas, may be lost if higher-order PCs are ignored
- Computationally expensive for large images or for many spectral bands

Tasseled Cap Component

• Linear spectral transform like the PCT

 $TC = W_{TC} \bullet DN$

 In this case, the W matrix is fixed for a given sensor

Tasseled Cap Component

• Table 5-2 Tasseled-cap components for MSS and TM

sensor	name	W _{TC}					
		MSS band	1	2	3	4	
L-1 MSS	soil brightness greenness yellow stuff non-such		-0.290 -0.829	-0.562 +0.522	+0.586 +0.600 -0.039 -0.543	+0.491 +0.194	
L-2 MSS	soil brightness greenness yellow stuff non-such	+	-0.283 -0.900	-0.660 +0.428	+0.577 +0.0759	+0.263 +0.388 0 -0.041 +0.882	
	TM band	1	2	3	4	5	7

Fall 2015

Tasseled Cap Component

• Table 5-2 Tasseled-cap components for MSS and TM

sensor	name	W _{TC}				
L-4 TM	soil brightness greenness wetness haze TC5 TC6	$\begin{bmatrix} +0.3037 +0.2793 +0.4743 +0.5585 +0.5082 +0.1863 \\ -0.2848 -0.2435 -0.5436 +0.7243 +0.0840 -0.1800 \\ +0.1509 +0.1973 +0.3279 +0.3406 -0.7112 -0.4572 \\ -0.8242 +0.0849 +0.4392 -0.0580 +0.2012 -0.2768 \\ -0.3280 +0.0549 +0.1075 +0.1855 -0.4357 +0.8085 \\ +0.1084 -0.9022 +0.4120 +0.0573 -0.0251 +0.0238 \end{bmatrix}$				
L-5 TM	soil brightness greenness wetness haze TC5 TC6	$ \begin{bmatrix} +0.2909 & +0.2493 & +0.4806 & +0.5568 & +0.4438 & +0.1706 \\ -0.2728 & -0.2174 & -0.5508 & +0.7221 & +0.0733 & -0.1648 \\ +0.1446 & +0.1761 & +0.3322 & +0.3396 & -0.6210 & -0.4186 \\ +0.8461 & +0.0731 & +0.4640 & -0.0032 & -0.0492 & +0.0119 \\ +0.0549 & -0.0232 & +0.0339 & -0.1937 & +0.4162 & -0.7823 \\ +0.1186 & -0.8069 & +0.4094 & +0.0571 & -0.0228 & +0.0220 \end{bmatrix} $				
	soil brightness greenness wetness haze TC5 TC6	additive terms: +10.3695 -0.7310 -3.3828 +0.7879 -2.4750 -0.0336				

Tasseled Cap Component

• Landsat 7		Huang et al., 2002					
0.3561	0.3972	0.3904	0.6966	0.2286	0	0.1596	
-0.3344	-0.3544	-0.4556	0.6966	-0.0242	0	-0.2630	
0.2626	0.2141	0.0926	0.0656	-0.7629	0	-0.5388	
0.0805	-0.0498	0.1950	-0.1327	0.5752	0	-0.7775	
-0.7252	-0.0202	0.6683	0.0631	-0.1494	0	-0.0274	
0.4000	-0.8172	0.3832	0.0602	-0.1095	0	0.0985	

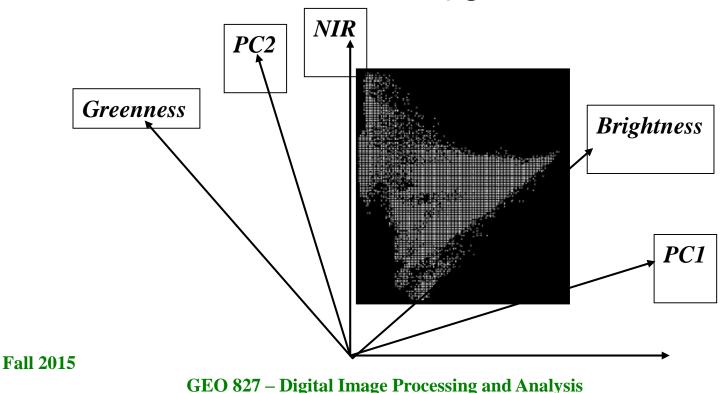
Fall 2015

Why Use the TCT

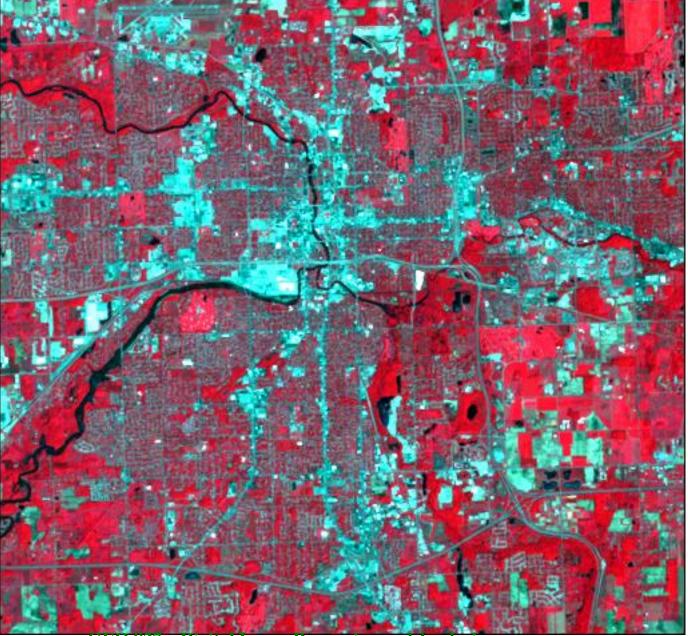
- It is a fixed reference, related to geophysical properties of the scene
 - First component is "soil brightness "
 - Second component is "greenness "
 - Third component is "yellowness" or "haze" or "wetness"
 - Forth component is "non-such"
- It was also referred as "n-space" index

Why Not Use the TCT

- Nonoptimal compression of data
- Requires multitemporal data for each sensor to derive W_{TC}



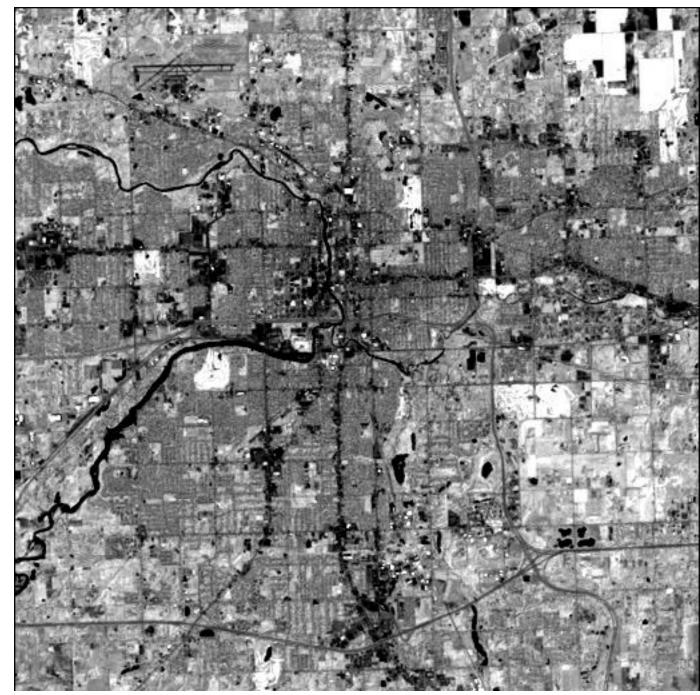
Landsat 7 ETM image over Lansing



GEO 827 – Digital Image Processing and Analysis

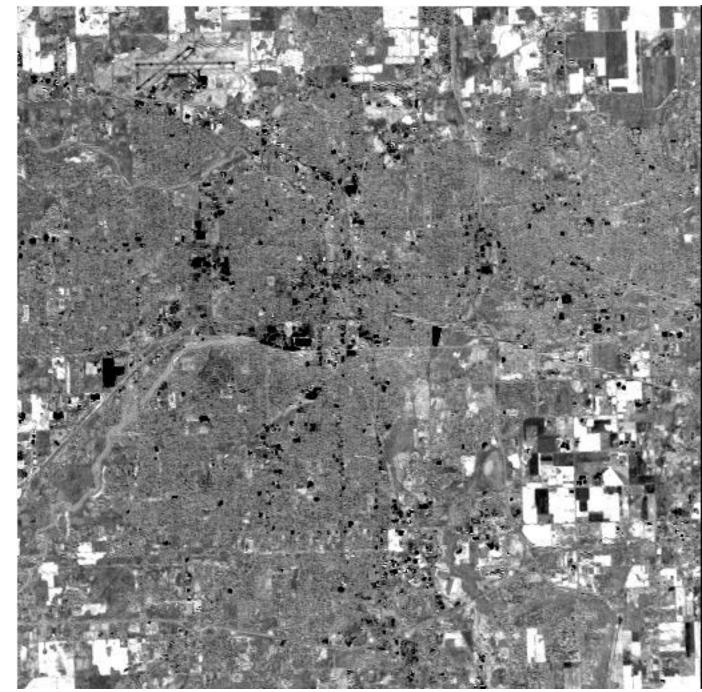
First PC1

2nd PC2



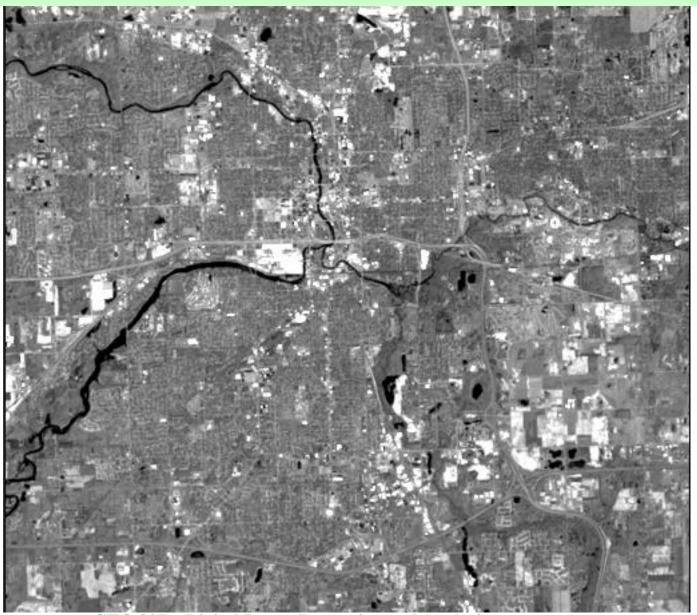
GEO 827 – Digital Image Processing and Analysis

3rd PC3



Fall 2015

First TC1 – Soil Brightness



GEO 827 – Digital Image Processing and Analysis

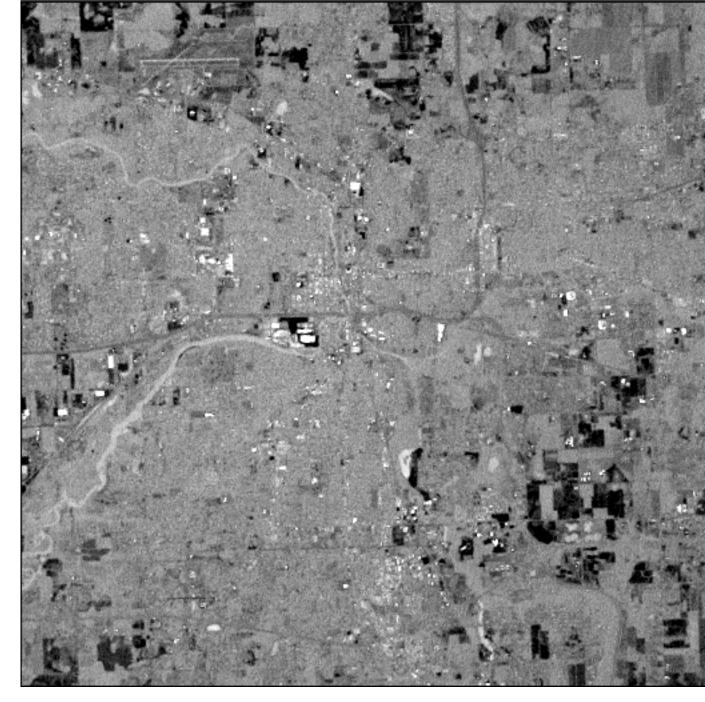
Second TC2 - Greenness

GEO 827 – Digital Image Processing and Analysis

Third TC3 – Yellowness

GEO 827 – Digital Image Processing and Analysis

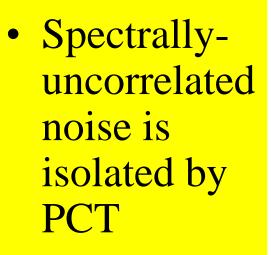
Fourth TC4 – Non-such



Fall 2015

Noise Detection with PCA

 Noise detection by spectral correlation



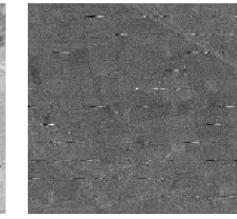
TM₂

TM₃

 PC_2

TM₄

PC₁



 PC_3

From Schowengerdt, p298

Fall 2015

Other Transforms

- SPC Standard Principal Component
 - Based on correlation, rather than covariance, matrix
- MNF Maximum Noise Fraction
 - Also known as the Noise-Adjusted Principal Components. It was the modification of the PCT and meant to improve the isolation of image noise that may occur in one or only a few spectral bands.