Atmospheric Radiative Transfer Modeling

9/22/2015

Common Sun-Target-Sensor Configuration

- 5/6S
- MODTRAN

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Facts:

- 1. In the solar spectrum, satellite sensors measure the radiance reflected by the atmosphere-Earth surface system illuminated by the sun.
 - The signal is perturbed by the atmosphere. Only a fraction of the photons coming from the target reaches the satellite sensor, typically 80% at 850nm and 50% at 450nm, so that the target seems less reflecting.
 The missing photons have been lost through two processes: absorption and scattering

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Facts:

- 4. Absorption by aerosols or atmospheric gases, principally O_2 , H_2O , O_3 , and CO_2 . However most satellite sensors avoid these absorption bands. Nevertheless, this needs to be taken into account in the modeling.
- 5. Scattering by molecules or aerosols changes the direction of radiation, which result in photons leaving the original path.

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Modeling

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Modeling Absorption equations for H2O and other three gases:

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Modeling

Absorption equations for H2O and other three gases:

where *m* is the absorber amount, N_o the total line number in the frequency interval Δv , *k* the average intensity and α_o the average Lorentz half width, obtained from intensity S_j and half width α_j of the *j*th spectral line by:

Fall 2015

$$k = \frac{\sum_{j=1}^{N_o} S_j}{N_o},$$

$$\frac{k}{\pi \alpha} = \frac{1}{4} \left[\frac{\sum_{j=1}^{N_o} S_j}{\sum_{j=1}^{N_o} (S_j \alpha_j)^{1/2}} \right]^2$$

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Modeling

Scattering effects: Take three processes into account.

• Direct solar flux attenuated by atmosphere $e^{-\tau/u_s}$

 $\mu_s = \cos(\theta s)$ and is atmosphere thickness

- Scattered flux on the first sun-surface path: $\tau_d(\theta_s) = \left[e_{sol}^{diff}(\theta_s) \right] / \mu_s E_s$
- Second scattered flux due to the trapping mechanism: $e^{-\tau/\mu_s} + \tau_d(\theta_s) \left[\rho S + \rho^2 S^2 + ...\right]$

• Simulation of the Satellite Signal in the Solar Spectrum (5S)

Modeling

Total normalized transmittance at the surface level is

$T(\theta_s)/[1-\rho S]$

$$T(\theta_s) = e^{-\tau/\mu_s} + \tau_d(\theta_s)$$

- Simulation of the Satellite Signal in the Solar Spectrum (5S)
- At satellite level, the radiance results from:
 - Contribution of the total (direct and diffuse) solar radiation reflected by the surface and directly transmitted from the surface to the sensor expressed by $e^{(-\tau/\mu s)}$ with $u_{\nu} = \cos(\theta_{\nu})$
 - Intrinsic atmospheric radiance expressed in terms of reflectances by a function of $\rho_a(\theta_s, \theta_v, \phi_v)$
 - The contribution of the environment which reflects the total flux, the photons reaching the sensor by scattering, we note this new atmospheric diffuse transmittance $\tau_d(\theta_v)$

- Simulation of the Satellite Signal in the Solar Spectrum (5S)
 - At satellite level, the apparent reflectance at the satellite:

$$\rho^*(\theta_s, \theta_v, \phi_v) = \rho_a(\theta_s, \theta_v, \phi_v) + \frac{T(\theta_s)}{1 - \rho S} \left(\rho e^{-\tau/\mu_v} + \rho \tau_d'(\theta_v)\right)$$

 In fact, the function should be reciprocal, and therefore it can be rewritten as:

$$\rho^*(\theta_s, \theta_v, \phi_v) = \rho_a(\theta_s, \theta_v, \phi_v) + \frac{\rho}{1 - \rho S} T(\theta_s) T(\theta_v)$$
$$T(\theta_v) = e^{-\tau/\mu_v} + \tau_d(\theta_v)$$

- Simulation of the Satellite Signal in the Solar Spectrum (5S)
 - When taking into account the non-homogeneous surrounding surfaces, the equation becomes:

$$\rho^*(\theta_s, \theta_v, \phi_v) = \rho_a(\theta_s, \theta_v, \phi_v) + \frac{T(\theta_s)}{1 - \rho_e S} \Big(\rho_c(M) e^{-\tau/\mu_v} + \rho_e \tau_d(\theta_v)\Big)$$

5S Flowchart

Organization Chart Title

Model Demonstration

- S Radiative Transfer Model Demonstration
- Required inputs:
 - Site Elevation
 - Sun-Earth-Sensor geometry
 - Model selection
 - Either surface reflectance or TOA reflectance.
 - If a patchy target chosen, reflectance properties of surrounding targets need to be provided

Geometric Conditions

0 - Enter solar zenith angle (degrees)

Solar azimuth angle Satellite zenith angle Satellite azimuth angle

1 - Meteosat Observation

Mon. Day, Decimal hour (UT), N. of C. & N.of L.

2 - GOES East Observation

Mon. Day, Decimal hour (UT), N. of C. & N.of L.

3 - GOES West Observation

Mon. Day, Decimal hour (UT), N. of C. & N.of L.

4 - AVHRR (NOAA8)

Mon. Day, Decimal hour (UT), N. of C.XLONAN (Long), HNA (Overpass time)

5 - AVHRR (NOAA9)

Mon. Day, Decimal hour (UT), N. of C.XLONAN (Long), HNA (Overpass time)

6 - HRV (SPOT)

Mon. Day, HH.DD, Long. Lat.

7 - TM (Landsat)

Mon. Day, HH.DD, Long. Lat.

Atmospheric Model

- 0 No Gaseous Absorption
- 1 Tropical

3

4

5

6

- 2 Midlatitude Summer
 - Midlatitude Winter
 - Subarctic Summer
 - Subartic Winter
 - US Standard 62
- 7 User Profile (Radiosonde data on 34 levels)
 - Altitude (km)
 - Pressure (MB)
 - Temperature (K)
 - H_20 Density (G/m³)
 - O_3 Density (g/m³)
- 8 User Profile
 - UW (g/m²)
 - UO_3 (cm-ATM)

Aerosol Model

- 0 No Aerosols
- 1. Continental Model
- 2. Maritime Model
- 3. Urban Model
- 4. User Defined
 - Volumetric % of dust-like
 - Volumetric % of water-soluble
 - Volumetric % of oceanic
 - Volumetric % of soot
 - (between 0 and 1)
- Aerosol Concentration
 - Visibility (at 550nm)
 - Optical Depth (550nm)

Use of RTM models to correct atmospheric effect

- 1. Obtain the visibility parameter of atmosphere
- 2. Run 5/6S or Modtran model at various surface reflectance values
- 3. Establish a regression line for each spectral band
- 4. Use the regression coefficient in an image processing software environment to make correct for atmospheric effect